設(shè)a=則二項(xiàng)式的常數(shù)項(xiàng)是       .
-160

試題分析:由于a=,所以二項(xiàng)式的展開式的通項(xiàng)公式為:,令3-r=0得r=3,故所求常數(shù)項(xiàng)為:,故應(yīng)填入:-160.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax-lnx,g(x)=
lnx
x
,它們的定義域都是(0,e],其中e≈2.718,a∈R
( I)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
( II)當(dāng)a=1時(shí),對任意x1,x2∈(0,e],求證:f(x1)>g(x2)+
17
27

( III)令h(x)=f(x)-g(x)•x,問是否存在實(shí)數(shù)a使得h(x)的最小值是3,如果存在,求出a的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3-
1
2
ax2+
9
2
(a>0)

(1)當(dāng)a=3時(shí),求f(x)的單調(diào)遞增區(qū)間;
(II)求證:曲線y=f(x)總有斜率為a的切線;
(III)若存在x∈[-1,2],使f(x)<0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=-
1
2
ax2+x-ln(1+x)
,其中a>0.
(1)若x=3是函數(shù)f(x)的極值點(diǎn),求a的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)若f(x)在[0,+∞)上的最大值是0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=
1
3
x3-
1
2
(2a-1)x2+[a2-a-f′(a)]x+b,(a,b∈
R)
(1)求f′(a)的值;
(2)若對任意的a∈[0,1],函數(shù)f(x)在x∈[0,1]上的最小值恒大于1,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

A、B兩地相距1千米,B、C兩地相距3千米,甲從A地出發(fā),經(jīng)過B前往C地,乙同時(shí)從B地出發(fā),前往C地.甲、乙的速度關(guān)于時(shí)間的關(guān)系式分別為(單位:千米/小時(shí)).甲、乙從起點(diǎn)到終點(diǎn)的過程中,給出下列描述:
①出發(fā)后1小時(shí),甲還沒追上乙             ② 出發(fā)后1小時(shí),甲乙相距最遠(yuǎn)
③甲追上乙后,又被乙追上,乙先到達(dá)C地   ④甲追上乙后,先到達(dá)C地 
其中正確的是         .(請?zhí)钌纤忻枋稣_的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線與直線及y=0所圍成的圖形的面積        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等于( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案