精英家教網(wǎng)如圖所示,四邊形ABCD是梯形,AD∥BC,則
OA
+
BC
+
AB
=( 。
A、
CD
B、
OC
C、
DA
D、
CO
分析:根據(jù)圖形,由向量加法的三角形法則依次求和,即可得到和向量的表達(dá)式,從圖形中找出相對(duì)應(yīng)的有向線段即可
解答:解:由題意,如圖
OA
+
BC
+
AB
=
OB
+
BC
=
OC

故選B.
點(diǎn)評(píng):本題考點(diǎn)是向量的加法及其幾何意義,考查向量加法的圖形表示及加法規(guī)則,是向量加法中的基本題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD為矩形,BC⊥平面ABE,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)設(shè)點(diǎn)M為線段AB的中點(diǎn),點(diǎn)N為線段CE的中點(diǎn).求證:MN∥平面DAE;
(2)求證:AE⊥BE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=PC=AC=1,BC=2,∠ACB=120°,AB⊥PC.
①求證:平面PAC⊥平面ABC;
②求三棱錐A-MBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;
(2)設(shè)M在線段AB上,且滿足AM=3MB,線段CE上是否存在一點(diǎn)N,使得MN∥平面DAE?若存在,求出CN的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,以AB=4cm,BC=3cm的長方形ABCD為底面的長方體被平面斜著截?cái)嗟膸缀误w,EFGH是它的截面.當(dāng)AE=5cm,BF=8cm,CG=12cm時(shí),試回答下列問題:
(1)求DH的長;
(2)求這個(gè)幾何體的體積;
(3)截面四邊形EFGH是什么圖形?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,M、N分別是AB,PC的中點(diǎn),
(1)求直線MN和AD所成角;
(2)求證:MN⊥平面PCD.

查看答案和解析>>

同步練習(xí)冊答案