【題目】經(jīng)市場調(diào)查,某種商品在過去50天的銷量和價格均為銷售時間t(天)的函數(shù),且銷售量近似地滿足f(t)=-2t+200(1t50,tN),前30天價格為g(t)=t+30(1≤t≤30,tN),后20天價格為g(t)=45(31≤t≤50,tN).

(1)寫出該種商品的日銷售額S與時間t的函數(shù)關(guān)系式;

(2)求日銷售額S的最大值.

【答案】(1)S=(2)6400.

【解析】(1)根據(jù)題意得

S

即S=

(2)①當(dāng)1≤t≤30,tNS=-(t-20)2+6400,

當(dāng)t=20時,S的最大值為6400;

當(dāng)31≤t≤50tN,S=-90t+9000為減函數(shù)

當(dāng)t=31時,S的最大值是6210

6210<6400,當(dāng)t=20時,日銷售額S有最大值6400.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,左頂點為.

(1)求橢圓的方程;

(2)已知為坐標(biāo)原點, 是橢圓上的兩點,連接的直線平行軸于點,證明: 成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2-8y+12=0,直線l經(jīng)過點D(-2,0),且斜率為k.

(1)求以線段CD為直徑的圓E的方程.

(2)若直線l與圓C相離,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l經(jīng)過兩直線l1:2x-y+4=0與l2:x-y+5=0的交點,且與直線x-2y-6=0垂直.

(1)求直線l的方程.

(2)若點P(a,1)到直線l的距離為,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知直線方程為(2m)x(12m)y43m0,求證:不論m為何實數(shù),此直線必過定點;

(2)過這定點引一直線,使它夾在兩坐標(biāo)軸間的線段被這點平分,求這條直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對各種不同的搭配方式作比較.在試制某種牙膏新品種時,需要選用兩種不同的添加劑.現(xiàn)有芳香度分別為01,23,45的六種添加劑可供選用.根據(jù)試驗設(shè)計原理,通常首先要隨機選取兩種不同的添加劑進(jìn)行搭配試驗.(寫解題過程)

1)求所選用的兩種不同的添加劑的芳香度之和等于4的概率;

2)求所選用的兩種不同的添加劑的芳香度之和不小于3的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一臺機器按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺點,每小時生產(chǎn)有缺點的零件的多少隨機器的運轉(zhuǎn)的速度的變化而變化,下表為抽樣試驗的結(jié)果:

轉(zhuǎn)速/(轉(zhuǎn)/秒)

16

14

12

8

每小時生產(chǎn)有缺點的零件數(shù)/件

11

9

8

5

(1)畫出散點圖;

(2)如果有線性相關(guān)關(guān)系,請畫出一條直線近似地表示這種線性關(guān)系;

(3)在實際生產(chǎn)中,若它們的近似方程為,允許每小時生產(chǎn)的產(chǎn)品中有缺點的零件最多為件,那么機器的運轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)人的某一特征(如眼睛的大小)是由他的一對基因所決定,d表示顯性基因,r表示隱性基因,則具有dd基因的人為純顯性,具有rr基因的人為純隱性,具有rd基因的人為混合性,純顯性與混合性的人都顯露顯性基因決定的某一特征,孩子從父母身上各得到一個基因,假定父母都是混合性,:

(1)1個孩子顯露顯性特征的概率是多少?

(2)“該父母生的2個孩子中至少有1個顯露顯性特征”,這種說法正確嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線僅在兩個不同的點,處的切線都經(jīng)過點,求證:,或

(2)當(dāng)時,若恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案