在中,已知角的對邊分別為.向量且向量與共線.
(Ⅰ)求的值;
(Ⅱ)若,求的面積的最大值.
(Ⅰ);(Ⅱ).
解析試題分析:(Ⅰ)由向量與共線得,,這個等式中既有邊又有角,這種等式一般有兩種考慮:要么只留邊,要么只留角.在本題中這兩種方法都行.
思路一、由正弦定理得:,然后用三角函數(shù)公式可求出.
思路二、由余弦定理得:,化簡得.再由余弦定理可得.
(II)由可求出.這樣三角形ABC的面積可表示為.
要求它的最大值,可考慮求出的最大值.因?yàn)橐阎?img src="http://thumb.zyjl.cn/pic5/tikupic/0e/9/1hi3d3.png" style="vertical-align:middle;" />和,所以應(yīng)該用余弦定理,這樣可得:,即.從而問題得以解決.
試題解析:(Ⅰ)法一、由得,,
所以.
由正弦定理得:,
,
又,
.
又.
法二、由向量與共線得,.
由余弦定理得:,化簡得:
,
即.
所以. 6分
(II)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bf/6/nw7pi1.png" style="vertical-align:middle;" />,.
由余弦定理得:,即.
. 12分
考點(diǎn):1、三角變換;2、正弦定理與余弦定理;3、向量.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某個公園有個池塘,其形狀為直角△ABC,∠C=90°,AB=2百米,BC=1百米.
(1)現(xiàn)在準(zhǔn)備養(yǎng)一批供游客觀賞的魚,分別在AB、BC、CA上取點(diǎn)D,E,F(xiàn),如圖(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面積S△DEF的最大值;
(2)現(xiàn)在準(zhǔn)備新建造一個荷塘,分別在AB,BC,CA上取點(diǎn)D,E,F(xiàn),如圖(2),建造△DEF連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,求△DEF邊長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在中,滿足的夾角為 ,是的中點(diǎn),
(1)若,求向量的夾角的余弦值;.
(2)若,點(diǎn)在邊上且,如果,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
南充市某廣場有一塊不規(guī)則的綠地如圖所示,城建部門欲在該地上建造一個底座為三角形的環(huán)境標(biāo)志,小李、小王設(shè)計的底座形狀分別為,,經(jīng)測量米,米,米,.
(Ⅰ)求的長度;
(Ⅱ)若環(huán)境標(biāo)志的底座每平方米造價為5000元,不考慮其他因素,小李、小王誰的設(shè)計使建造費(fèi)用最低(請說明理由)?最低造價為多少?()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com