【題目】2019年,隨著中國第一款5G手機(jī)投入市場,5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬臺(tái),其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺(tái)的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足

1)將利潤表示為產(chǎn)量萬臺(tái)的函數(shù);

2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤最大?最大利潤為多少萬元?

【答案】(1) (2) 當(dāng)產(chǎn)量為4萬臺(tái)時(shí),公司所獲利潤最大,最大利潤為5600萬元.

【解析】

1)先求得總成本函數(shù),然后用求得利潤的函數(shù)表達(dá)式.

2)用二次函數(shù)的最值的求法,一次函數(shù)最值的求法,求得當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤最大,且求得最大利潤.

1)由題意得.

因?yàn)?/span>

所以

2)由(1)可得,當(dāng)時(shí),.

所以當(dāng)時(shí),(萬元)

當(dāng)時(shí),,單調(diào)遞增,

所以(萬元).

綜上,當(dāng)時(shí),(萬元).

所以當(dāng)產(chǎn)量為4萬臺(tái)時(shí),公司所獲利潤最大,最大利潤為5600萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;

2)若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面幾何中,研究三角形內(nèi)任意一點(diǎn)與三邊的關(guān)系時(shí),有真命題:邊長為的正三角形內(nèi)任意一點(diǎn)到各邊的距離之和是定值。類比上述命題,請寫出關(guān)于正四面體內(nèi)任意一點(diǎn)與四個(gè)面的關(guān)系的一個(gè)真命題,并給出證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)記函數(shù)的極值點(diǎn)為,若,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)滿足,且當(dāng)時(shí),,則方程上所有根的和為______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)動(dòng)健康已成為大家越來越關(guān)心的話題,某公司開發(fā)的一個(gè)類似計(jì)步數(shù)據(jù)庫的公眾號(hào).手機(jī)用戶可以通過關(guān)注該公眾號(hào)查看自己每天行走的步數(shù),同時(shí)也可以和好友進(jìn)行運(yùn)動(dòng)量的PK和點(diǎn)贊.現(xiàn)從張華的好友中隨機(jī)選取40人(男、女各20人),記錄他們某一天行走的步數(shù),并將數(shù)據(jù)整理如表:

步數(shù)

性別

02000

20015000

50018000

800110000

10000

1

2

4

7

6

0

3

9

6

2

1)若某人一天行走的步數(shù)超過8000步被評定為“積極型”,否則被評定為“懈怠型”,根據(jù)題意完成下列2×2列聯(lián)表,并據(jù)此判斷能否有90%的把握認(rèn)為男、女的“評定類型”有差異?

積極型

懈怠型

總計(jì)

總計(jì)

2)在張華的這40位好友中,從該天行走的步數(shù)不超過5000步的人中隨機(jī)抽取2人,設(shè)抽取的女性有X人,求X=1時(shí)的概率.

參考公式與數(shù)據(jù):

PK2k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=,其中n=a+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計(jì)劃在市的區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對該市已開設(shè)分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設(shè)分店的個(gè)數(shù), 表示這個(gè)個(gè)分店的年收入之和.

(個(gè))

2

3

4

5

6

(百萬元)

2.5

3

4

4.5

6

(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程

(2)假設(shè)該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關(guān)系為,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在區(qū)開設(shè)多少個(gè)分店時(shí),才能使區(qū)平均每個(gè)店的年利潤最大?

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.在購進(jìn)機(jī)器時(shí),可以一次性額外購買幾次維修服務(wù),每次維修服務(wù)費(fèi)用200元,另外實(shí)際維修一次還需向維修人員支付小費(fèi),小費(fèi)每次50元.在機(jī)器使用期間,如果維修次數(shù)超過購機(jī)時(shí)購買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費(fèi)用500元,無需支付小費(fèi).現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)一次性購買幾次維修服務(wù),為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計(jì)表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

x表示1臺(tái)機(jī)器在三年使用期內(nèi)的維修次數(shù),y表示1臺(tái)機(jī)器在維修上所需的費(fèi)用(單位:元),表示購機(jī)的同時(shí)購買的維修服務(wù)次數(shù).

(1)若=10,求yx的函數(shù)解析式;

(2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

(3)假設(shè)這100臺(tái)機(jī)器在購機(jī)的同時(shí)每臺(tái)都購買10次維修服務(wù),或每臺(tái)都購買11次維修服務(wù),分別計(jì)算這100臺(tái)機(jī)器在維修上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺(tái)機(jī)器的同時(shí)應(yīng)購買10次還是11次維修服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南北朝時(shí)期的數(shù)學(xué)家張丘建是世界數(shù)學(xué)史上解決不定方程的第一人,他在《張丘建算經(jīng)》中給出一個(gè)解不定方程的百雞問題,問題如下:雞翁一,值錢五,雞母一,值錢三,雞雛三,值錢一.百錢買百雞,問雞翁母雛各幾何?用代數(shù)方法表述為:設(shè)雞翁、雞母、雞雛的數(shù)量分別為,,,則雞翁、雞母、雞雛的數(shù)量即為方程組的解.其解題過程可用框圖表示如下圖所示,則框圖中正整數(shù)的值為 ______

查看答案和解析>>

同步練習(xí)冊答案