【題目】已知指數(shù)函數(shù)滿足.又定義域為實數(shù)集R的函數(shù) 是奇函數(shù).
①確定的解析式;
②求的值;
③若對任意的R,不等式恒成立,求實數(shù)的取值范圍.
【答案】①;②,;③.
【解析】
試題分析:①設指數(shù)函數(shù),過點,代入求;
②因為定義域為R,且是奇函數(shù),所以解得,又根據(jù)是奇函數(shù),滿足代入后解得;
③根據(jù)奇函數(shù)將不等式化簡為恒成立,根據(jù)②所求得函數(shù)的解析式,判定函數(shù)的單調性,從而得到恒成立,根據(jù)求的范圍.
試題解析:解:①設,∵,則,∴,
∴.
②由①知.∵是奇函數(shù),且定義域為R,∴,
即,∴,∴,又,∴,
∴. 故,.
③由②知,易知在R上為減函數(shù).
又∵是奇函數(shù),從而不等式等價于,即恒成立,
∵在R上為減函數(shù),∴有,
即對于一切R有恒成立,∴判別式,
∴.
故實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】在極標坐系中,已知圓的圓心,半徑
(1)求圓的極坐標方程;
(2)若,直線的參數(shù)方程為(t為參數(shù)),直線交圓于兩點,求弦長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1= ,且an+1=an(an+1)(n∈N*),則m= + +…+ 的整數(shù)部分是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個圓錐的底面半徑為1,高為3,在圓錐中有一個半徑為x的內接圓柱.
(1)試用x表示圓柱的高;
(2)當x為何值時,圓柱的側面積最大,最大側面積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形中,,,四邊形
為矩形,平面平面,.
(I)求證:平面;
(II)點在線段上運動,設平面與平面所成二面角的平面角為,
試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】王老師的班上有四個體育健將甲、乙、丙、丁,他們都特別擅長短跑,在某次運動會上,他們四人要組成一個米接力隊,王老師要安排他們四個人的出場順序,以下是他們四人的對話:
甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;
丙:我也不跑第一棒和第四棒;。喝绻也慌艿诙簦揖筒慌艿谝话;
王老師聽了他們四人的對話,安排了一種合理的出場順序,滿足了他們的所有要求, 據(jù)此我們可以斷定,在王老師安排的出場順序中,跑第三棒的人是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)F(x)= 是定義在R上的函數(shù),其中f(x)的導函數(shù)為f′(x),滿足f′(x)<f(x)對于x∈R恒成立,則( )
A.f(2)>e2f(0),f(2012)<e2012f(0)
B.f(2)<e2f(0),f(2012)<e2012f(0)
C.f(2)>e2f(0),f(2012)>e2012f(0)
D.f(2)<e2f(0),f(2012)>e2012f(0)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯(lián)網共享單車“忽如一夜春風來”,遍布了各個城市的大街小巷.為了解共享單車在市的使用情況,某調研機構在該市隨機抽取了位市民進行調查,得到的列聯(lián)表如下:
經常使用 | 偶爾或不用 | 合計 | |
歲及以下的人數(shù) | |||
歲以上的人數(shù) | |||
合計 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為使用共享單車的情況與年齡有關?
(2)現(xiàn)從所抽取的歲以上的市民中利用分層抽樣的方法再抽取位市民,從這位市民中隨機選出位市民贈送禮品,求選出的位市民中至少有位市民經常使用共享單車的概率.
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的各項都大于1,且a1=2,a ﹣an+1﹣a +1=0(n∈N*).
(1)求證: ≤an<an+1≤n+2;
(2)求證: + + +…+ <1.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com