【題目】已知函數(shù),其中.

(Ⅰ)討論函數(shù)極值點的個數(shù);

(Ⅱ)若函數(shù)有兩個極值點,其中,是否存在整數(shù)使得不等式

恒成立?若存在,求整數(shù)的值;若不存在,請說明理由.(參考數(shù)據(jù):

【答案】見解析;(.

【解析】試題分析:(Ⅰ)求導(dǎo)得,令,討論,結(jié)合單調(diào)性可得解;

由(Ⅰ)可知, 是方程的兩根,所以,可得,令,設(shè),可得,即,進而得所以,求解即可.

試題解析:

(Ⅰ)由 .

時,即, ,所以為增函數(shù),沒有極值點.

時,即,由

,則,當時, ,即,所以

增函數(shù),沒有極值點,,則,當變化時, 的變化情況如下表:

所以函數(shù)有兩個極值點綜上可知:當時, 極值點的個數(shù)為;當時, 極值點的個數(shù)為

(Ⅱ)由(Ⅰ)可知, 是方程的兩根,所以.

,因為,所以,設(shè)

因為所以上為減函數(shù),所以,因為

所以,即.

因為,所以

所以,解得因為,所以,又因為,所以

所以存在整數(shù)使得不等式恒成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)定義域為R,對于任意R恒有.

(1)若,求的值;

(2)若時,,求函數(shù),的解析式及值域;

(3)若時,,求在區(qū)間,上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 底面, , , ,

1)求證:平面 平面;

2)若棱上存在一點,使得二面角的余弦值為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓,直線l過點

若直線l被圓所截得的弦長為,求直線l的方程;

若圓P是以為直徑的圓,求圓P與圓的公共弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合A,BR中兩個子集,對于,定義: .①若;則對任意;②若對任意,則;③若對任意,則A,B的關(guān)系為.上述命題正確的序號是______. (請?zhí)顚懰姓_命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a=(sinx,cosx),b=(sinx,sinx),f(x)=2a·b.

(1)求f(x)的最小正周期和最大值;

(2)若g(x)=f(x),x,畫出函數(shù)yg(x)的圖象,討論yg(x)-m(m∈R)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】標號為0910瓶礦泉水.

1)從中取4瓶,恰有2瓶上的數(shù)字相鄰的取法有多少種?

2)把10個空礦泉水瓶掛成如下4列的形式,作為射擊的靶子,規(guī)定每次只能射擊每列最下面的一個(射中后這個空瓶會掉到地下),把10個礦泉水瓶全部擊中有幾種不同的射擊方案?

3)把擊中后的礦泉水瓶分送給A、B、C三名垃圾回收人員,每個瓶子1角錢.垃圾回收人員賣掉瓶子后有幾種不同的收入結(jié)果?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分數(shù)區(qū)間,得到考生的等級成績.

某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數(shù);

(Ⅱ)按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學期望.

(附:若隨機變量,則,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某化工企業(yè)2018年年底投入100萬元,購入一套污水處理設(shè)備。該設(shè)備每年的運轉(zhuǎn)費用是0.5萬元,此外,每年都要花費一定的維護費,第一年的維護費為2萬元,由于設(shè)備老化,以后每年的維護費都比上一年增加2萬元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費用為(單位:萬元)

(1)用表示;

(2)當該企業(yè)的年平均污水處理費用最低時,企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。

查看答案和解析>>

同步練習冊答案