【題目】如圖,已知四棱錐,側(cè)面是正三角形,底面為邊長2的菱形,.

1)設(shè)平面平面,求證:

2)求多面體的體積;

3)求二面角的余弦值.

【答案】1)證明見解析;(2;(3.

【解析】

1)由,證得平面,再由線面平行的性質(zhì),即可得到

2)取中點(diǎn),連結(jié),推得,,得到平面,

再由多面體的體積,結(jié)合體積公式,即可求解;

3)由,設(shè)的中點(diǎn)為,連結(jié),推得,從而得到就是二面角的平面角,由此可求得二面角的余弦值.

證明:(1)因?yàn)?/span>平面平面

所以平面,

平面,平面平面,所以

2)取中點(diǎn),連結(jié),由

同理,又因?yàn)?/span>,所以平面,

中,,所以,

所以多面體的體積

;

3)由題意知,底面為邊長2的菱形,,

所以,又,所以

設(shè)的中點(diǎn)為,連結(jié)

由側(cè)面是正三角形知,,所以,

因此就是二面角的平面角,

中,,

由余弦定理得,

二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技創(chuàng)新公司投資萬元研發(fā)了一款網(wǎng)絡(luò)產(chǎn)品,產(chǎn)品上線第1個(gè)月的收入為40萬元,預(yù)計(jì)在今后若干個(gè)月內(nèi),該產(chǎn)品每月的收入平均比上一月增長,同時(shí),該產(chǎn)品第1個(gè)月的維護(hù)費(fèi)支出為萬元,以后每月的維護(hù)費(fèi)支出平均比上一個(gè)月增加50萬元.

(1)分別求出第6個(gè)月該產(chǎn)品的收入和維護(hù)費(fèi)支出,并判斷第6個(gè)月該產(chǎn)品的收入是否足夠支付第6個(gè)月的維護(hù)費(fèi)支出?

(2)從第幾個(gè)月起,該產(chǎn)品的總收入首次超過總支出?(總支出包括維護(hù)費(fèi)支出和研發(fā)投資支出)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)設(shè)函數(shù),若在區(qū)間上有解,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知,,底面,且,,的中點(diǎn),上,且.

1)求證:平面平面

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合.

(1),求實(shí)數(shù)的值;

(2),求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為,且經(jīng)過點(diǎn)M(1),過點(diǎn)P(2,1)的直線l與橢圓C相交于不同的兩點(diǎn)AB.

1)求橢圓C的方程;

2)是否存在直線l,滿足?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)當(dāng)時(shí),求函數(shù)在區(qū)間上的最值;

(Ⅱ)若,是函數(shù)的兩個(gè)極值點(diǎn),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場在促銷期間規(guī)定:商場內(nèi)所有商品按標(biāo)價(jià)的80%出售,同時(shí)當(dāng)顧客在該商場內(nèi)消費(fèi)滿一定金額后,按如下方案獲得相應(yīng)金額的獎(jiǎng)券:

消費(fèi)金額(元)的范圍

……

獲得獎(jiǎng)券的金額(元)

28

58

88

128

……

根據(jù)上述促銷方法,顧客在該商場購物可以獲得雙重優(yōu)惠.例如:購買標(biāo)價(jià)為400元的商品,則消費(fèi)金額為320元,然后還能獲得對應(yīng)的獎(jiǎng)券金額為28.于是,該顧客獲得的優(yōu)惠額為:.設(shè)購買商品得到的優(yōu)惠率.試問:

1)購買一件標(biāo)價(jià)為1000元的商品,顧客得到的優(yōu)惠率是多少?

2)當(dāng)商品的標(biāo)價(jià)為元時(shí),試寫出顧客得到的優(yōu)惠率y關(guān)于標(biāo)價(jià)x元之間的函數(shù)關(guān)系式;

3)當(dāng)顧客購買標(biāo)價(jià)不超過600元的商品時(shí),該顧客是否可以得到超過30%的優(yōu)惠率?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓貧困地區(qū)的孩子們過一個(gè)溫暖的冬天,某校陽光志愿者社團(tuán)組織“這個(gè)冬天不再冷”冬衣募捐活動(dòng),共有50名志愿者參與.志愿者的工作內(nèi)容有兩項(xiàng):①到各班做宣傳,倡議同學(xué)們積極捐獻(xiàn)冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實(shí)際情況,只參與其中的某一項(xiàng)工作.相關(guān)統(tǒng)計(jì)數(shù)據(jù)如下表所示:

(1)如果用分層抽樣的方法從參與兩項(xiàng)工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級(jí)宣傳的志愿者”的概率是多少?

(2)若參與班級(jí)宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案