已知1+i是方程x2+bx+c=0的一個(gè)根(b、c為實(shí)數(shù)).
(1)求b,c的值;
(2)試說明1-i也是方程的根嗎?
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(1)通過復(fù)數(shù)相等,列出b,c的關(guān)系式,求解即可;
(2)把1-i代入方程,適合方程則是方程的根,否則不是.
解答: 解:(1)∵1+i是方程x2+bx+c=0的一個(gè)根,
∴(1+i)2+b(1+i)+c=0,即(b+c)+(2+b)i=0,
b+c=0
2+b=0

解得
b=-2
c=2

∴b,c的值為:-2,2.
(2)方程為:x2-2x+2=0,
把1-i代入方程可得(1-i)2-2(1-i)+2=0顯然成立,
∴1-i也是方程的根.
點(diǎn)評:此題主要考查了一元二次方程根與系數(shù)的關(guān)系,方程根滿足方程,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(4,3),
b
=(-1,2)
(1)求 
a
b
的角的余弦;
(2)若(
a
b
)⊥(2
a
+
b
),求λ;
(3)若(
a
b
)∥(2
a
+
b
),求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:1+
1
3
+
1
5
+…+
1
2n-1
2n-1
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)O(0,0),A(2,3),B(5,4),C(7,10),若
AP
=
AB
AC
(λ∈R)
(1)是否存在λ,使得點(diǎn)P在第一、三象限的角平分線上?
(2)是否存在λ,使得四邊形OBPA為平行四邊形?(若存在,則求出λ的值,若不存在,請說明理由.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD為正方形,△ABE為等腰直角三角形,∠BAE=90°,且AD⊥AE.
(Ⅰ)證明:平面AEC⊥平面BED.
(Ⅱ)求直線EC與平面BED所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(1,2)是函數(shù)f(x)=ax(a>0,a≠1)的圖象上一點(diǎn),數(shù)列{an}的前n項(xiàng)和Sn=f(n)-1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
n
an+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中有3個(gè)紅球,4個(gè)白球,3個(gè)黑球,從中任取三個(gè)球.
(Ⅰ)求取出的三個(gè)球中紅球的個(gè)數(shù)不多于白球的個(gè)數(shù)的概率;
(Ⅱ)取出的三個(gè)球中紅球個(gè)數(shù)與白球個(gè)數(shù)之和X的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面SBC⊥底面ABCD,∠ABC=45°,SA=SB,證明:SA⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=kx3+3(k-1)x2-k2+1在區(qū)間(0,4)上是增函數(shù),則k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案