方程sin(-πx)=
1
2014
x的實(shí)數(shù)解的個(gè)數(shù)是
 
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用,三角函數(shù)的圖像與性質(zhì)
分析:我們可以在同一個(gè)直角坐標(biāo)系中分別畫出y=sin(-πx)與函數(shù)y=
1
2014
x的圖象,然后分析他們交點(diǎn)的個(gè)數(shù),進(jìn)行得到方程sin(-πx)=
1
2014
x的實(shí)數(shù)解的個(gè)數(shù).
解答: 解:函數(shù)y=sin(-πx)與函數(shù)y=
1
2014
x的圖象如下圖所示:

由圖可得函數(shù)y=sin(-πx)的周期為2,
在每個(gè)區(qū)間(2k,2k+2)(k∈Z)上,y=sin(-πx)與函數(shù)y=
1
2014
x的圖象均有兩個(gè)交點(diǎn),
且兩個(gè)函數(shù)圖象還交于坐標(biāo)原點(diǎn),
故兩個(gè)函數(shù)圖象共有:
2014-(-2014)
2
×2+1
=4029個(gè)交點(diǎn),
即方程sin(-πx)=
1
2014
x有4029實(shí)數(shù)解
故答案為:4029
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,判斷方程實(shí)數(shù)根的個(gè)數(shù),即判斷對應(yīng)函數(shù)零點(diǎn)的個(gè)數(shù),這種轉(zhuǎn)化思想是解答此類問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=1-i(i是虛數(shù)單位)在復(fù)平面上對應(yīng)的點(diǎn)位于第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一輪船行駛時(shí),單位時(shí)間的燃料費(fèi)u與其速度v的立方成正比,若輪船的速度為每小時(shí)10km 時(shí),燃料費(fèi)為每小時(shí)35元,其余費(fèi)用每小時(shí)為560元,這部分費(fèi)用不隨速度而變化.已知該輪船最高速度為25km/h,則輪船速度為
 
km/h時(shí),輪船航行每千米的費(fèi)用最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的是
 

①若散點(diǎn)圖所有點(diǎn)都在一條直線附近,則這條直線為回歸直線;
②已知隨機(jī)變量?服從正態(tài)分布N(2,a2),且P(ξ<4)=0.9,則P(0<ξ<2)=0.4;
0
-1
1-x2
dx=
1
0
1-x2
dx=
π
4
;
④E(2ξ+3)=2E(ξ+3);D(2ξ+3)=2D(ξ)+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

構(gòu)造一個(gè)周期為π,值域?yàn)閇
1
2
5
2
],在[0,
π
2
]上是增函數(shù)的偶函數(shù)f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“不等式ax2+bx+c>0和不等式dx2+ex+f>0的解相同”是“
a
d
=
b
e
=
c
f
”的
 
條件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2014+ax2-
b
x2
-8,f(-2)=10,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程sin2x+2sinx-1+m=0有解.則實(shí)數(shù)m的范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α、β、γ是三個(gè)不同的平面,給出下列命題,正確的是(  )
A、若m?β,α⊥β,則m⊥α
B、若m∥α,m⊥β,則α⊥β
C、若α⊥β,α⊥γ,則β⊥γ
D、若α∩γ=m,β∩γ=n,m∥n,則α∥β

查看答案和解析>>

同步練習(xí)冊答案