【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知曲線C: =1,以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線l:ρ(cosθ﹣2sinθ)=6.
(Ⅰ)寫(xiě)出直線l的直角坐標(biāo)方程和曲線C的參數(shù)方程;
(Ⅱ)在曲線C上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線C以F1(﹣2,0)、F2(2,0)為焦點(diǎn),且過(guò)點(diǎn)P(7,12).
(1)求雙曲線C與其漸近線的方程;
(2)若斜率為1的直線l與雙曲線C相交于A,B兩點(diǎn),且 (O為坐標(biāo)原點(diǎn)).求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的不等式ex﹣(a+1)x﹣b≥0(e為自然對(duì)數(shù)的底數(shù))在R上恒成立,則(a+1)b的最大值為( )
A.e+1
B.e+
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)h(x)=ax3﹣1(a∈R),g(x)=lnx,f(x)=h(x)+3xg(x)(e為自然對(duì)數(shù)的底數(shù)).
(I)若f(x)圖象過(guò)點(diǎn)(1,﹣1),求f(x)的單調(diào)區(qū)間;
(II)若f(x)在區(qū)間( ,e)上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(III)函數(shù)F(x)=(a﹣ )x3+ x2g(a)﹣h(x)﹣1,當(dāng)a>e 時(shí),函數(shù)F(x)過(guò)點(diǎn)A(1,m)的切線至少有2條,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:函數(shù)f(x)=lg(ax2﹣ax+1)的定義域是R;命題 在第一象限為增函數(shù),若“p∧q”為假,“p∨q”為真,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣alnx﹣a. (Ⅰ)當(dāng)a=e時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)證明:對(duì)于a∈(0,e),f(x)在區(qū)間 上有極小值,且極小值大于0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com