【題目】設(shè)函數(shù)(,且),(其中為的導(dǎo)函數(shù)).
(Ⅰ)當(dāng)時(shí),求的極大值點(diǎn);
(Ⅱ)討論的零點(diǎn)個(gè)數(shù).
【答案】(1)的極大值點(diǎn)為.(2)見(jiàn)解析
【解析】試題分析:
(1)由題意可得,由導(dǎo)函數(shù)討論函數(shù)的單調(diào)性可得的極大值點(diǎn)為.
(2)分類(lèi)討論可得:當(dāng)或時(shí),有一個(gè)零點(diǎn);當(dāng)或時(shí),有2個(gè)零點(diǎn);當(dāng)或時(shí),有3個(gè)零點(diǎn).
試題解析:
解:(Ⅰ),,解得.
當(dāng)時(shí),;當(dāng)時(shí),,故的極大值點(diǎn)為.
(Ⅱ)(1)先考慮時(shí),的零點(diǎn)個(gè)數(shù),當(dāng)時(shí),為單調(diào)減函數(shù),
,,由零點(diǎn)存在性定理知有一個(gè)零點(diǎn).
當(dāng)時(shí),由,得
,即,即,令,則.
由,得,當(dāng)時(shí),;當(dāng)時(shí),,
故,,且總成立,故的圖象如圖,
由數(shù)形結(jié)合知,
①若,即時(shí),當(dāng)時(shí),無(wú)零點(diǎn),故時(shí),有一個(gè)零點(diǎn);
②若,即時(shí),當(dāng)時(shí),有一個(gè)零點(diǎn),故時(shí),有2個(gè)零點(diǎn);
③若,即時(shí),當(dāng)時(shí),有2個(gè)零點(diǎn),故時(shí),有3個(gè)零點(diǎn).
(2)再考慮的情形,若,則,同上可知,
當(dāng),即時(shí),有一個(gè)零點(diǎn);
當(dāng),即時(shí),有2個(gè)零點(diǎn);
當(dāng),即時(shí),有3個(gè)零點(diǎn).
綜上所述,當(dāng)或時(shí),有一個(gè)零點(diǎn);
當(dāng)或時(shí),有2個(gè)零點(diǎn);
當(dāng)或時(shí),有3個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、分別是橢圓的左頂點(diǎn)、右焦點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn),當(dāng)軸時(shí), .
(1)求橢圓的離心率;
(2)若橢圓存在點(diǎn),使得四邊形是平行四邊形(點(diǎn)在第一象限),求直線與的斜率之積;
(3)記圓為橢圓的“關(guān)聯(lián)圓”. 若,過(guò)點(diǎn)作橢圓的“關(guān)聯(lián)圓”的兩條切線,切點(diǎn)為、,直線的橫、縱截距分別為、,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,則當(dāng)時(shí),討論單調(diào)性;
(2)若,且當(dāng)時(shí),不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列為等比數(shù)列, ,公比,且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè), ,求使的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】猜商品的價(jià)格游戲, 觀眾甲: 主持人:高了! 觀眾甲: 主持人:低了! 觀眾甲: 主持人:高了! 觀眾甲: 主持人:低了! 觀眾甲: 主持人:低了! 則此商品價(jià)格所在的區(qū)間是 ( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在⊙O中,相交于點(diǎn)E的兩弦AB,CD的中點(diǎn)分別是M,N,直線MO與直線CD相交于點(diǎn)F.
證明:(1)∠MEN+∠NOM=180°;
(2)FE·FN=FM·FO.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的定義域?yàn)?/span>,對(duì)給定的正數(shù),若存在閉區(qū)間,使得函數(shù)滿足:①在內(nèi)是單調(diào)函數(shù);②在上的值域?yàn)?/span>,則稱(chēng)區(qū)間為的級(jí)“理想?yún)^(qū)間”.下列結(jié)論錯(cuò)誤的是( )
A. 函數(shù)()存在1級(jí)“理想?yún)^(qū)間”
B. 函數(shù)()不存在2級(jí)“理想?yún)^(qū)間”
C. 函數(shù)()存在3級(jí)“理想?yún)^(qū)間”
D. 函數(shù), 不存在4級(jí)“理想?yún)^(qū)間”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分,(1)小問(wèn)7分,(2)小問(wèn)5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,矩形中, , ,沿對(duì)角線把折起,使點(diǎn)在平面上的射影落在上.
(1)求證:平面平面;
(2)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com