【題目】隨機抽取某班6名學生,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)依次為:162,168,170,171,179,182,那么此班學生平均身高大約為cm;樣本數(shù)據(jù)的方差為

【答案】172;45
【解析】解:計算數(shù)據(jù):162,168,170,171,179,182的平均數(shù)為

= ×(162+168+170+171+179+182)=172;

樣本數(shù)據(jù)的方差為

s2= ×[(162﹣172)2+(168﹣172)2+(170﹣172)2+(171﹣172)2+(179﹣172)2+(182﹣172)2]=45,

所以答案是:172,45.

【考點精析】本題主要考查了平均數(shù)、中位數(shù)、眾數(shù)和極差、方差與標準差的相關(guān)知識點,需要掌握⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù);標準差和方差越大,數(shù)據(jù)的離散程度越大;標準差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標準差才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,點M是左側(cè)面ADD1A1上的一個動點,滿足 =1,則 的夾角的最大值為(

A.30°
B.45°
C.60°
D.75°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=2,點P是平面A1B1C1D1內(nèi)的一個動點,則三棱錐P﹣ABC的正視圖與俯視圖的面積之比的最大值為(
A.1
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知P是拋物線y2=4x上的一個動點,則點P到直線l1:3x﹣4y+12=0和l2:x+2=0的距離之和的最小值是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下莖葉圖記錄了甲、乙兩個籃球隊在3次不同比賽中的得分情況.乙隊記錄中有一個數(shù)字模糊,無法確認,假設(shè)這個數(shù)字具有隨機性,并在圖中以m表示.那么在3次比賽中,乙隊平均得分超過甲隊平均得分的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+(2a+1)x+b,其中a,b∈R. (Ⅰ)當a=1,b=﹣4時,求函數(shù)f(x)的零點;
(Ⅱ)如果函數(shù)f(x)的圖象在直線y=x+2的上方,證明:b>2;
(Ⅲ)當b=2時,解關(guān)于x的不等式f(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2, . (Ⅰ)如果b=3,求c的值;
(Ⅱ)如果 ,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱A1B1C1-ABC中,側(cè)棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中點,則下列敘述正確的是( )

A.AC⊥平面ABB1A1
B.CC1與B1E是異面直線
C.A1C1∥B1E
D.AE⊥BB1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的定義域;
(2)求f(1),f(﹣1),f(2),f(﹣2);
(3)判斷并證明f(x)的奇偶性.

查看答案和解析>>

同步練習冊答案