已知直角為直角,,建立適當(dāng)?shù)淖鴺?biāo)系,寫出頂點(diǎn),,的坐標(biāo),并求證斜邊的中點(diǎn)到三個(gè)頂點(diǎn)的距離相等.


解析:

設(shè)為原點(diǎn),方向?yàn)?img width=15 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/146/133346.gif">軸正半軸,方向?yàn)?img width=13 height=15 src="http://thumb.zyjl.cn/pic1/1899/sx/148/133348.gif">軸正半軸,

由距離公式可得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1與l2平行,點(diǎn)A是這兩直線之間的一定點(diǎn),且點(diǎn)A到這兩直線的距離分別為3和2,以A為直角頂點(diǎn)的直角三角形另兩頂點(diǎn)B、C分別在直線l1、l2上,則當(dāng)B、C運(yùn)動(dòng)時(shí),直角三角形ABC面積的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求棱錐A-PBC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-y2=1及點(diǎn)A(
72
,0).
(1)求點(diǎn)A到雙曲線一條漸近線的距離;
(2)已知點(diǎn)O為原點(diǎn),點(diǎn)P在雙曲線上,△POA為直角三角形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浦東新區(qū)二模)已知直角△ABC的三邊長(zhǎng)a,b,c,滿足a≤b<c
(1)在a,b之間插入2011個(gè)數(shù),使這2013個(gè)數(shù)構(gòu)成以a為首項(xiàng)的等差數(shù)列{an },且它們的和為2013,求c的最小值;
(2)已知a,b,c均為正整數(shù),且a,b,c成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列S1,S2,S3,…Sn,且Tn=-S1+S2-S3+…+(-1) nSn,求滿足不等式T2n>6•2n+1的所有n的值;
(3)已知a,b,c成等比數(shù)列,若數(shù)列{Xn}滿足
5
Xn=(
c
a
)n-(-
a
c
)n
(n∈N+),證明:數(shù)列{
Xn
}中的任意連續(xù)三項(xiàng)為邊長(zhǎng)均可以構(gòu)成直角三角形,且Xn是正整數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案