已知α∈(0,π),且數(shù)學(xué)公式,則cosα-sinα的值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:把已知等式左邊提取后,利用兩角和與差的余弦函數(shù)公式化為一個(gè)角的余弦函數(shù),整理后求出cos()的值,由α的范圍求出的范圍,利用特殊角的三角函數(shù)值求出α的度數(shù)為,把變?yōu)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/196.png' />+,進(jìn)而利用兩角和與差的正弦、余弦函數(shù)公式求出sinα和cosα的值,將sinα和cosα的值代入所求的式子中,即可求出值.
解答:∵cosα+sinα=cosα+sinα)=cos(α-)=
∴cos()=,且α必為鈍角
又α∈(0,π),∴∈(-,),
=,即α=,
∴sinα=sin=sin(+)=sincos+cossin=,
cosα=cos=cos(+)=coscos-sinsin=
則cosα-sinα=-=-
故選B
點(diǎn)評(píng):此題考查了三角函數(shù)的恒等變換及化簡(jiǎn)求值,涉及的知識(shí)有:兩角和與差的正弦、余弦函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•靜安區(qū)一模)已知a<0,關(guān)于x的不等式ax2-2(a+1)x+4>0的解集是
(
2
a
,2)
(
2
a
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•金華模擬)已知a>0,b>0,a、b的等比中項(xiàng)是1,且m=b+
1
a
,n=a+
1
b
,則m+n的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•揭陽(yáng)二模)已知a>0,函數(shù)f(x)=ax2-lnx.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=
1
8
時(shí),證明:方程f(x)=f(
2
3
)
在區(qū)間(2,+∞)上有唯一解;
(3)若存在均屬于區(qū)間[1,3]的α,β且β-α≥1,使f(α)=f(β),證明:
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,
1
b
-
1
a
>1,求證:
1+a
1
1-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={0,1},N={y|y=x2+1,x∈M},則M∩N=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案