設(shè)橢圓的左、右焦點分別是,下頂點為,線段的中點為為坐標原點),如圖.若拋物線軸的交點為,且經(jīng)過、兩點.

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為拋物線上的一動點,過點作拋物線的切線交橢圓、兩點,求面積的最大值.
(Ⅰ);(Ⅱ)的面積的最大值為

試題分析:(Ⅰ)求橢圓的方程,本題解題的關(guān)鍵是利用拋物線的方程求出橢圓方程中參數(shù)的值,拋物線軸的交點為,且經(jīng)過、兩點,求出、兩點點的坐標,即可求出橢圓的半長軸與半焦距,再求出,就能寫出橢圓方程;(Ⅱ)設(shè),為拋物線上的一動點,過點作拋物線的切線交橢圓、兩點,求面積的最大值,利用拋物線線上的點的切線方程與圓聯(lián)立利用弦長公式與點到直線的距離公式分別求出三角形的底邊長度與高,表示出△MPQ的面積利用函數(shù)的知識求出最值,設(shè)),表示出過點的拋物線的切線方程,與橢圓的方程聯(lián)立,利用弦長公式表示出線段的長度,再求出點到直線的距離為,表示出面積,由于其是參數(shù)的函數(shù),利用函數(shù)的知識求出其最值即可得到,的面積的最大值.
試題解析:(Ⅰ)由題意可知B(0, 1),則A(0, 2),故b=2.    2分
令y=0得,則F1( 1,0),F(xiàn)2(1,0),故c =1.    4分

所以.于是橢圓C1的方程為:.    6分
(Ⅱ)設(shè)N(),由于知直線PQ的方程為:
. 即.    7
代入橢圓方程整理得:,
=,
 , ,    9分

.    10分
設(shè)點M到直線PQ的距離為d,則
所以,的面積S
     12分
時取到“=”,經(jīng)檢驗此時,滿足題意.
綜上可知,的面積的最大值為.    13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右兩焦點分別為,是橢圓上一點,且在軸上方,

(1)求橢圓的離心率的取值范圍;
(2)當取最大值時,過的圓的截軸的線段長為6,求橢圓的方程;
(3)在(2)的條件下,過橢圓右準線上任一點引圓的兩條切線,切點分別為.試探究直線是否過定點?若過定點,請求出該定點;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,斜率為的直線過拋物線的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.

(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓以坐標軸為對稱軸,且經(jīng)過點.記其上頂點為,右頂點為.
(1)求圓心在線段上,且與坐標軸相切于橢圓焦點的圓的方程;
(2)在橢圓位于第一象限的弧上求一點,使的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三點P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2為焦點且過點P的橢圓的標準方程;
(2)設(shè)點P、F1、F2關(guān)于直線y=x的對稱點分別為,求以為焦點且過點的雙曲線的標準方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點,離心率為,過點的直線與橢圓交于不同的兩點
(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù),).
(Ⅰ)化曲線的極坐標方程為直角坐標方程;
(Ⅱ)若直線經(jīng)過點,求直線被曲線截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線x2=2py(p>0)的焦點作斜率為1的直線與該拋物線交于A,B兩點,A,B在x軸上的正射影分別為D,C.若梯形ABCD的面積為12,則P="__________" .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

長為2的線段的兩個端點在拋物線上滑動,則線段中點軸距離的最小值是          

查看答案和解析>>

同步練習(xí)冊答案