精英家教網 > 高中數學 > 題目詳情

【題目】設A1 , A2 , …,An(n≥4)為集合S={1,2,…,n}的n個不同子集,為了表示這些子集,作n行n列的數陣,規(guī)定第i行第j列的數為: .則下列說法中,錯誤的是(

A.數陣中第一列的數全是0當且僅當A1=
B.數陣中第n列的數全是1當且僅當An=S
C.數陣中第j行的數字和表明集合Aj含有幾個元素
D.數陣中所有的n2個數字之和不超過n2﹣n+1

【答案】C
【解析】解:數陣中第一列的數全是0,當且僅當1A1 , 2A1 , …,nA1 , ∴A正確;
數陣中第n列的數全是1當且僅當1∈An , 2∈An , …,n∈An , ∴B正確;
當A1 , A2 , …,An中一個為S本身,其余n﹣1個子集為S互不相同的n﹣1元子集時,數陣中所有的n2個數字之和最大,且為n+(n﹣1)2=n2﹣n+1,∴D正確;
數陣中第j行的數字和表明元素j屬于幾個子集,∴C錯誤.
故選:C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設關于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個數中任取的一個數,b是從0,1,2三個數中任取的一個數,求上述方程有實根的概率.
(2)若a是從區(qū)間[0,3]任取的一個數,b是從區(qū)間[0,2]任取的一個數,求上述方程有實根的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c.已知acosB﹣c=
(1)求角A的大小;
(2)若b﹣c= ,a=3+ ,求BC邊上的高.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}中,已知a1= ,an+1=
(1)證明:an<an+1 ;
(2)證明:當n≥2時,( <2.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體EF﹣ABCD中,ABCD,ABEF均為直角梯形, ,DCEF為平行四邊形,平面DCEF⊥平面ABCD.

(1)求證:DF⊥平面ABCD;
(2)若△ABD是等邊三角形,且BF與平面DCEF所成角的正切值為 ,求二面角A﹣BF﹣C的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知中心在原點O,焦點在x軸上的橢圓的一個頂點為B(0,1),B到焦點的距離為2.

(1)求橢圓的標準方程;
(2)設P,Q是橢圓上異于點B的任意兩點,且BP⊥BQ,線段PQ的中垂線l與x軸的交點為(x0 , 0),求x0的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是我國古代數學名著,它在幾何學中的研究比西方早1千多年.在《九章算術》中,將底面為直角三角形,且側棱垂直于底面的三棱柱稱為塹堵,陽馬指底面為矩形,一側棱垂直于底面的四棱錐,鱉臑指四個面均為直角三角形的四面體.如圖,在塹堵ABC﹣A1B1C1中,AC⊥BC.
(Ⅰ)求證:四棱錐B﹣A1ACC1為陽馬;并判斷四面體B﹣A1CC1是否為鱉臑,若是,請寫出各個面的直角(只要求寫出結論).
(Ⅱ)若A1A=AB=2,當陽馬B﹣A1ACC1體積最大時,求二面角C﹣A1B﹣C1的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若實數x,y滿足:x2+y2﹣2x﹣2y=0,則x+y的取值范圍是(
A.[﹣4,0]
B.[2﹣2 ,2+2 ]
C.[0,4]
D.[﹣2﹣2 ,﹣2+2 ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 經過點 ,且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)設A,B是橢圓C的左,右頂點,P為橢圓上異于A,B的一點,以原點O為端點分別作與直線AP和BP平行的射線,交橢圓C于M,N兩點,求證:△OMN的面積為定值.

查看答案和解析>>

同步練習冊答案