【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,分別記錄了4月1日至4月5日每天的晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月2日

4月3日

4月4日

4月5日

溫差

12

11

13

10

8

發(fā)芽率

26

25

30

23

16

(1)從這5天中任選2天,求至少有一天種子發(fā)芽數(shù)超過25顆的概率;

(2)請(qǐng)根據(jù)4月1日、4月2日、4月3日這3天的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)根據(jù)(2)中所得的線性回歸方程,預(yù)測(cè)溫差為時(shí),種子發(fā)芽的顆數(shù).

參考公式:,

【答案】(Ⅰ);(Ⅱ);(III)37 .

【解析】

試題分析】(1)運(yùn)用排列數(shù)組合數(shù)公式借助古典概型的計(jì)算公式進(jìn)行求解;(2)借助題設(shè)條件及線性回歸系數(shù)的計(jì)算公式求解;(3)借助線性回歸方程進(jìn)行分析求解:

(Ⅰ);

(Ⅱ)

;

(III)時(shí),,種子發(fā)芽數(shù)為37

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線焦點(diǎn)為,且,過作斜率為的直線交拋物線兩點(diǎn).

1)若,,求

2)若為坐標(biāo)原點(diǎn),為定值,當(dāng)變化時(shí),始終有,求定值的大;

3)若,,,當(dāng)改變時(shí),求三角形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)頂點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在橢圓上且,關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,過的垂線交橢圓于另一點(diǎn),連軸于.

1)求橢圓的方程;

2)求證:軸;

3)記的面積為的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn),,動(dòng)點(diǎn)兩點(diǎn)連線的斜率滿足.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)是曲線軸正半軸的交點(diǎn),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,請(qǐng)說明有幾個(gè);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn),,動(dòng)點(diǎn)兩點(diǎn)連線的斜率滿足.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)是曲線軸正半軸的交點(diǎn),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,請(qǐng)說明有幾個(gè);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),以O為圓心的圓與直線相切.

(1)求圓O的方程.

(2)直線與圓O交于A,B兩點(diǎn),在圓O上是否存在一點(diǎn)M,使得四邊形為菱形?若存在,求出此時(shí)直線l的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等腰直角三角形,,將沿底邊上的高線折起到位置,使,如圖所示,分別取的中點(diǎn).

(1)求二面角的余弦值;

(2)判斷在線段上是否存在一點(diǎn),使平面?若存在,求出點(diǎn)的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)若對(duì)于區(qū)間上的任意,都有,則實(shí)數(shù)的最小值是(  )

A. 20B. 18

C. 3D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校將甲、乙等6名新招聘的老師分配到4個(gè)不同的年級(jí),每個(gè)年級(jí)至少分配1名教師,且甲、乙兩名老師必須分到同一個(gè)年級(jí),則不同的分法種數(shù)為______

查看答案和解析>>

同步練習(xí)冊(cè)答案