已知四棱錐底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F
分別是線段AB.BC的中點,
(1)證明:PF⊥FD;
(2)在PA上找一點G,使得EG∥平面PFD;.
(3)若與平面所成的角為,求二面角的余弦值.
(1)見解析(2)滿足AG=AP的點G為所求(3)
【解析】(1)證明FD平面PAF即可.
(2)取AD的四分之一分點N,使m則EN//DF,然后再取PA的四分之一分點,使,即是所求G點位置.易證EG//平面PFD.
(3)利用空間向量法求解即可.要把二面角兩個面的法向量求出來,然后再求法向量的夾角.
解:(1)證明:連接AF,則AF=,DF=,
又AD=2,∴DF2+AF2=AD2,∴DF⊥AF.又PA⊥平面ABCD,
∴DF⊥PA,又PA∩AF=A,
……………4分
(2)過點E作EH∥FD交AD于點H,則EH∥平面PFD且AH=AD.
再過點H作HG∥DP交PA于點G,則HG∥平面PFD且AG=AP,
∴平面EHG∥平面PFD.∴EG∥平面PFD.
從而滿足AG=AP的點G為所求.………………8分
(3)建立如圖所示的空間直角坐標系,
因為PA⊥平面ABCD ,所以是與平面所成的角.又有已知得,所以,所以.
設平面的法向量為,由
得,令,解得:.
所以.又因為,所以是平面的法向量,易得,所以.
由圖知,所求二面角的余弦值為.……………………12分
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com