如圖,對于大于1的自然數(shù)m的n次冪可用奇數(shù)進行如圖所示的“分裂”,仿此,記53的“分裂”中的最小數(shù)為a,而52的“分裂”中最大的數(shù)是b,則a+b=______.
52=1+3+5+7+9,53=21+23+25+27+29,
52中,最大數(shù)是5×2-1=9;
53的“分裂”中最小數(shù)是21,則
則a=21,b=9.∴a+b=30,
故答案為:30.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面幾何里有射影定理:設△ABC的兩邊AB⊥AC,D是A點在BC邊上的射影,則AB2=BD•BC.拓展到空間,在四面體A-BCD中,DA⊥面ABC,點O是A在面BCD內的射影,且O在△BCD內,類比平面三角形射影定理,△ABC,△BOC,△BDC三者面積之間關系為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

邊長為a的正三角形內任一點到三邊距離之和為定值
3
2
a
,類比到空間,棱長均為a的三棱錐內任一點到各面距離之和為( 。
A.
3
a
3
B.
6
a
2
C.
6
a
3
D.
2
a
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知命題:平面上一矩形ABCD的對角線AC與邊AB、AD所成的角分別為α、β(如圖1),則cos2α+cos2β=1.用類比的方法,把它推廣到空間長方體中,試寫出相應的一個真命題并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在Rt△ABC中,CA⊥CB,斜邊AB上的高為h1,則
1
h21
=
1
|CA|2
+
1
|CB|2
;
類比此性質,如圖,在四面體P-ABC中,若PA,PB,PC兩兩垂直,
底面ABC上的高為h,則得到的一個正確結論是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

集合{1,2,3,…,n}(n≥3)中,每兩個相異數(shù)作乘積,所有這些乘積的和記為f(n),如:
f(3)=1×2+1×3+2×3=
1
2
[62-(12+22+32)]=11,
f(4)=1×2+1×3+1×4+2×3+2×4+3×4
=
1
2
[102-(12+22+32+42)]=35
f(5)=1×2+1×3+1×4+1×5+…4×5
=
1
2
[152-(12+22+32+42+52)]=85.

則f(7)=______.(寫出計算結果)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用反證法證明命題“三角形的內角至多有一個鈍角”時,假設的內容應為( )
A.假設至少有一個鈍角B.假設至少有兩個鈍角
C.假設沒有一個鈍角D.假設沒有一個鈍角或至少有兩個鈍角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用反證法證明“自然數(shù)a,b,c中恰有一個偶數(shù)”時,下列假設正確的是   (   )
A.假設a,b,c都是奇數(shù)或至少有兩個偶數(shù)
B.假設a,b,c都是偶數(shù)
C.假設a,b,c至少有兩個偶數(shù)
D.假設a, b,c都是奇數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

計算:

查看答案和解析>>

同步練習冊答案