【題目】已知函數f(x)=ax3+bx2﹣2x+c在x=﹣2時有極大值6,在x=1時有極小值,
(1)求a,b,c的值;
(2)求f(x)在區(qū)間[﹣3,3]上的最大值和最小值.
【答案】
(1)解:f′(x)=3ax2+2bx﹣2由條件知 解得a= ,b= ,c=
(2)解:f(x)= ,f′(x)=x2+x﹣2=0解得x=﹣2,x=1
由上表知,在區(qū)間[﹣3,3]上,當x=3時,fmax= ;當x=1,fmin=
【解析】(1)因為函數f(x)=ax3+bx2﹣2x+c在x=﹣2時有極大值6,在x=1時有極小值得到三個方程求出a、b、c;(2)令f′(x)=x2+x﹣2=0解得x=﹣2,x=1,在區(qū)間[﹣3,3]上討論函數的增減性,得到函數的最值.
【考點精析】認真審題,首先需要了解函數的極值與導數(求函數的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值),還要掌握函數的最大(小)值與導數(求函數在上的最大值與最小值的步驟:(1)求函數在內的極值;(2)將函數的各極值與端點處的函數值,比較,其中最大的是一個最大值,最小的是最小值)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項均為正數,Sn表示數列{an}的前n項的和,且
(1)求數列{an}的通項公式;
(2)設 ,求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別是內角A,B,C的對邊,AB=5,cos∠ABC= .
(1)若BC=4,求△ABC的面積S△ABC;
(2)若D是邊AC的中點,且BD= ,求邊BC的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設利用的舊墻的長度為x(單位:m),修建此矩形場地圍墻的總費用為y(單位:元). (Ⅰ)將y表示為x的函數:
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求二面角B﹣DC﹣B1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=lnx﹣ax,g(x)=ex﹣3ax,其中a為實數,若f(x)在(1,+∞)上是單調減函數,且g(x)在(1,+∞)上有最小值,則a的取值范圍是( )
A.( ,+∞)
B.[ ,+∞)
C.(1,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線 ,方程x2+y2﹣2mx﹣2y+m+3=0表示圓.
(Ⅰ)求實數m的取值范圍;
(Ⅱ)當m=﹣2時,試判斷直線l與該圓的位置關系,若相交,求出相應弦長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com