【題目】已知,是兩條不同直線,,是兩個(gè)不同平面,則下列命題正確的是 ( )
A. 若,垂直于同一平面,則與平行
B. 若,則
C. 若,不平行,則在內(nèi)不存在與平行的直線
D. 若,不平行,則與不可能垂直于同一平面
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2x+alnx在區(qū)間(0,1)內(nèi)無極值點(diǎn),則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)一種新藥, 成年人按規(guī)定的劑量服用后, 每毫升血液中的含藥量(微克)與時(shí)間(小時(shí))之間關(guān)系滿足如圖所示的曲線.
(1)寫出關(guān)于的函數(shù)關(guān)系式:;
(2)據(jù)進(jìn)一步測定: 每毫升血液中的含藥量不少于微克時(shí), 治療疾病有效. 求服藥一次后治療疾病有效的時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=
(1)求函數(shù)f(x)的定義域A;
(2)設(shè)B={x|﹣1<x<2},當(dāng)實(shí)數(shù)a、b∈(B∩RA)時(shí),證明: |.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線方程為x2=2py(p>0),其焦點(diǎn)為F,點(diǎn)O為坐標(biāo)原點(diǎn),過焦點(diǎn)F作斜率為k(k≠0)的直線與拋物線交于A,B兩點(diǎn),過A,B兩點(diǎn)分別作拋物線的兩條切線,設(shè)兩條切線交于點(diǎn)M.
(1)求 ;
(2)設(shè)直線MF與拋物線交于C,D兩點(diǎn),且四邊形ACBD的面積為 ,求直線AB的斜率k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=2x,g(x)是一次函數(shù),并且點(diǎn)(2,2)在函數(shù)f[(g(x)]的圖象上,點(diǎn)(2,5)在函數(shù)g[f(x)]的圖象上,則g(x)的解析式為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=ex+ae﹣x為偶函數(shù),則f(x﹣1)< 的解集為( )
A.(2,+∞)
B.(0,2)
C.(﹣∞,2)
D.(﹣∞,0)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1,F(xiàn)2分別是橢圓C: (a>b>0)的左,右焦點(diǎn),M是C上一點(diǎn)且MF2與x軸垂直,直線MF1與C的另一個(gè)交點(diǎn)為N.
(1)若直線MN的斜率為,求C的離心率;
(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在上的奇函數(shù),且對任意,當(dāng)時(shí),都有.
(1)若,試比較與的大小關(guān)系;
(2)若對任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com