【題目】如圖,在四邊形ABCD中,AB=BC=2,∠ABC=90°,DA=DC= .現(xiàn)沿對角線AC折起,使得平面DAC⊥平面ABC,此時點A,B,C,D在同一個球面上,則該球的體積是(
A.
B.
C.
D.12π

【答案】A
【解析】解:在圖2中,取AC的中點E,連結DE,BE, ∵AD=CD,∴DE⊥AC,
∵平面ACD∩平面ABC=AC,平面ACD⊥平面ABC,
DE平面ACD,
∴DE⊥平面ABC,
∵∠ABC=90°,
∴棱錐外接球的球心O在直線DE上,
∵AD=CD= ,AB=BC=2,∠ABC=90°,
∴BE=AE=CE= AC= ,DE= =2,
設OE=x,則OD=2﹣x,OB= = ,
∴2﹣x= ,解得x= ,
∴外接球的半徑r=2﹣x=
∴外接球的體積V= = ×( 3=
故選A.

【考點精析】解答此題的關鍵在于理解球內(nèi)接多面體的相關知識,掌握球的內(nèi)接正方體的對角線等于球直徑;長方體的外接球的直徑是長方體的體對角線長.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,經(jīng)過村莊A有兩條夾角為60°的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個倉庫M、N (異于村莊A),要求PMPNMN2(單位:千米).如何設計, 可以使得工廠產(chǎn)生的噪聲對居民的影響最小(即工廠與村莊的距離最遠)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ,若函數(shù) 處與直線 相切.
(Ⅰ)求實數(shù) 的值;
(Ⅱ)求函數(shù) 上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)采用隨機模擬的方法估計某運動員射擊次,至少擊中次的概率:先由計算機給出之間取整數(shù)值的隨機數(shù),指定,表示沒有擊中目標,,,,,,表示擊中目標,以個隨機數(shù)為一組,代表射擊次的結果,經(jīng)隨機模擬產(chǎn)生了組隨機數(shù):

根據(jù)以上數(shù)據(jù)統(tǒng)計該運動員射擊次至少擊中次的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】70年代中期,美國各所名牌大學校園內(nèi),人們都像發(fā)瘋一般,夜以繼日,廢寢忘食地玩一個數(shù)學游戲.這個游戲十分簡單:任意寫出一個自然數(shù)N,并且按照以下的規(guī)律進行變換:如果是個奇數(shù),則下一步變成3N+1;如果是個偶數(shù),則下一步變成 .不單單是學生,甚至連教師、研究員、教授與學究都紛紛加入.為什么這個游戲的魅力經(jīng)久不衰?因為人們發(fā)現(xiàn),無論N是怎樣一個數(shù)字,最終都無法逃脫回到谷底1.準確地說,是無法逃出落入底部的4﹣2﹣1循環(huán),永遠也逃不出這樣的宿命.這就是著名的“冰雹猜想”.按照這種運算,自然數(shù)27經(jīng)過十步運算得到的數(shù)為(
A.142
B.71
C.214
D.107

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:對數(shù) 有意義;命題q:實數(shù)t滿足不等式 .(Ⅰ)若命題p為真,求實數(shù) 的取值范圍;
(Ⅱ)若命題p是命題q的充分不必要條件,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l與拋物線y2=4x相交于不同的A、B兩點.
(1)如果直線l過拋物線的焦點,求 · 的值;
(2)如果 · =-4,證明直線l必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y2=4x的焦點F的直線交拋物線于A,B兩點,且|AF|=2|BF|,則直線AB的斜率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學著作《九章算術》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為日.(結果保留一位小數(shù),參考數(shù)據(jù):lg2≈0.30,lg3≈0.48)

查看答案和解析>>

同步練習冊答案