【題目】條形圖給出的是2017年全年及2018年全年全國居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國居民人均消費及其構(gòu)成,現(xiàn)有如下說法:
①2018年全年全國居民人均可支配收入的平均數(shù)的增長率低于2017年;
②2018年全年全國居民人均可支配收入的中位數(shù)約是平均數(shù)的;
③2018年全年全國居民衣(衣著)食(食品煙酒)住(居。┬校ń煌ㄍㄐ牛┑闹С龀^人均消費的.
則上述說法中,正確的個數(shù)是( )
A. 3B. 2C. 1D. 0
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求曲線在點處的切線方程;
(2)若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列與滿足:,且為正項等比數(shù)列,,.
(1)求數(shù)列與的通項公式;
(2)若數(shù)列滿足,為數(shù)列的前項和,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,點是橢圓上任意一點,的最小值為,且該橢圓的離心率為.
(1)求橢圓的方程;
(2)若是橢圓上不同的兩點,且,若,試問直線是否經(jīng)過一個定點?若經(jīng)過定點,求出該定點的坐標(biāo);若不經(jīng)過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知表示正整數(shù)的所有因數(shù)中最大的奇數(shù),例如:的因數(shù)有,則的因數(shù)有,則,那么__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與直線交于兩點,不與軸垂直,圓.
(1)若點在橢圓上,點在圓上,求的最大值;
(2)若過線段的中點且垂直于的直線過點,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是實系數(shù)一元二次方程的虛根,記它在直角坐標(biāo)平面上的對應(yīng)點位.
(1)若在直線上,求證:在圓:上;
(2)給定圓,則存在唯一的線段滿足:
①若在圓上,則在線段上;
②若是線段上一點(非端點),則在圓上,寫出線段的表達(dá)式,并說明理由;
(3)由(2)知線段與圓之間確定了一種對應(yīng)關(guān)系,通過這種對應(yīng)關(guān)系的研究,填寫表一(表中是(1)中圓的對應(yīng)線段).
表一:
線段與線段的關(guān)系 | 的取值或表達(dá)式 |
所在直線平行于所在直線 | |
所在直線平分線段 | |
線段與線段長度相等 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形SABC中,,D為邊SC上的點,且,現(xiàn)將沿AD折起到達(dá)的位置(折起后點S記為P),并使得.
(1)求證:平面ABCD;
(2)設(shè),
①若點E在線段BP上,且滿足,求平面EAC與平面PDC所成的銳二面角的余弦值
②設(shè)G是AD的中點,則在內(nèi)(含邊界)是否存在點F,使得平面PBC?若存在,確定點F的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年六、七月份,我國長江中下游地區(qū)進(jìn)入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)年10年間梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:
假設(shè)每年的梅雨季節(jié)天氣相互獨立,求該地區(qū)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率.
老李在該地區(qū)承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產(chǎn)量畝與降雨量之間的關(guān)系如下面統(tǒng)計表所示,又知乙品種楊梅的單位利潤為元,請你幫助老李分析,他來年應(yīng)該種植哪個品種的楊梅可以使總利潤萬元的期望更大?并說明理由.
降雨量 | ||||
畝產(chǎn)量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com