【題目】已知O是平面直角坐標(biāo)系的原點,雙曲線.

1)過雙曲線的右焦點x軸的垂線,交A、B兩點,求線段AB的長;

2)設(shè)M的右頂點,P右支上任意一點,已知點T的坐標(biāo)為,當(dāng)的最小值為時,求t的取值范圍;

3)設(shè)直線的右支交于A,B兩點,若雙曲線右支上存在點C使得,求實數(shù)m的值和點C的坐標(biāo).

【答案】1; 2 3,.

【解析】

1)根據(jù)題意求出A、B兩點坐標(biāo),即得線段AB的長;

2)先列函數(shù)關(guān)系式,再根據(jù)二次函數(shù)確定最小值取法,即得t的取值范圍;

3)聯(lián)立直線方程與雙曲線方程,利用韋達(dá)定理求,解得C點坐標(biāo)(用m表示),代入雙曲線方程解得m的值和點C的坐標(biāo).

1)因為,所以令

2,設(shè)

由題意得取最小值,所以

3)由,,設(shè),則,所以,

因為上,所以

因為點C在雙曲線右支上,所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面是邊長為的菱形,,是等邊三角形,的中點,.

(1)求證:

(2)若在線段上,且,能否在棱上找到一點,使平面平面?若存在,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)調(diào)查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:

年齡x

28

32

38

42

48

52

58

62

收縮壓單位

114

118

122

127

129

135

140

147

其中:,

請畫出上表數(shù)據(jù)的散點圖;

請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;的值精確到

若規(guī)定,一個人的收縮壓為標(biāo)準(zhǔn)值的倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍及以上,則為高度高血壓人群一位收縮壓為180mmHg70歲的老人,屬于哪類人群?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,是邊長為2的等邊三角形,底面是菱形,且

證明:;

求平面與平面所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱中,平面是線段上的動點,是線段上的中點.

(Ⅰ)證明:;

(Ⅱ)若,且直線所成角的余弦值為,試指出點在線段上的位置,并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四面體的頂點、、分別在兩兩垂直的三條射線, , 上,則在下列命題中,錯誤的是( )

A. 是正三棱錐

B. 直線與平面相交

C. 直線與平面所成的角的正弦值為

D. 異面直線所成角是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的對角線相交于點,平面,四邊形為平行四邊形.

(1)求證:平面平面;

(2)若,,點在線段上,且,求平面與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理過程是演繹推理的是(  )

A. 某校高三有8個班,1班有51人,2班有53人,3班有52人,由此推測各班人數(shù)都超過50

B. 由三角形的性質(zhì),推測空間四面體的性質(zhì)

C. 平行四邊形的對角線互相平分,菱形是平行四邊形,所以菱形的對角線互相平分

D. 在數(shù)列中,,可得,由此歸納出的通項公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是拋物線上一點,的焦點.

(1)若,上的兩點,證明:,,依次成等比數(shù)列.

(2)過作兩條互相垂直的直線與的另一個交點分別交于,(的上方),求向量軸正方向上的投影的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案