不論m為何實數(shù),直線(m-1)x-y+2m+1=0恒過定點( )
A.(1,
B.(-2,0)
C.(-2,3)
D.(2,3)
【答案】分析:將直線的方程(m-1)x-y+2m+1=0是過某兩直線交點的直線系,故其一定通過某個定點,將其整理成直線系的標準形式,求兩定直線的交點此點即為直線恒過的定點.
解答:解:直線(m-1)x-y+2m+1=0可為變?yōu)閙(x+2)+(-x-y+1)=0
 令,解得
 故無論m為何實數(shù),直線(m-1)x-y+2m+1=0恒通過一個定點(-2,3)
故選C.
點評:本題考點是過兩條直線交點的直線系,考查由直線系方程求其過定點的問題,解題的方法是將直線系方程變?yōu)閗l1+l2=0,的、然后解方程組,求出直線系kl1+l2=0過的定點.直線系過定點的這一直線用途廣泛,經(jīng)常出現(xiàn)在直線與圓錐曲線,直線與圓等的綜合題型中.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

不論m為何實數(shù),直線(m-1)x-y+2m+1=0恒過定點(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不論m為何實數(shù),直線(m-1)x+y+1=0恒過定點
(0,-1)
(0,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不論m為何實數(shù),直線(m-1)x-y+2m+1=0恒過定點___________________.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省德州市高三12月月考文科數(shù)學試卷(解析版) 題型:選擇題

不論m為何實數(shù),直線(m-1)x-y+2m+1=0 恒過定點                      (   )

A.(1, -)         B.(-2, 0)           C.(2, 3)             D.(-2, 3)

 

查看答案和解析>>

同步練習冊答案