在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點(diǎn),且滿足=== (如圖(1)),將△AEF沿EF折起到△EF的位置,使二面角EFB成直二面角,連接B、P(如圖(2)).

(1)求證: E⊥平面BEP;
(2)求直線E與平面BP所成角的大小.
(1)見解析;(2)直線E與平面BP所成角的大小為.

試題分析:(1)為計(jì)算上的便利,不妨設(shè)正三角形ABC的邊長為3,

利用已知條件首先得到△ADF是正三角形.再推出EF⊥AD,∠EB為二面角EFB的平面角,根據(jù)二面角EFB為直二面角,得到E⊥BE.
又∵BE∩EF=E,∴E⊥平面BEF,即E⊥平面BEP.
(2)建立空間直角坐標(biāo)系,利用“空間向量方法”求角.
試題解析: (1)不妨設(shè)正三角形ABC的邊長為3,

則在圖(1)中,取BE的中點(diǎn)D,連接DF,
===,∴FA=AD=2.又∠A=60°,
則△ADF是正三角形.又AE=ED=1,∴EF⊥AD,
∴在圖(2)中有E⊥EF,BE⊥EF,∴∠EB為二面角EFB的平面角,
∵二面角EFB為直二面角,∴E⊥BE.
又∵BE∩EF=E,∴E⊥平面BEF,即E⊥平面BEP.
(2)由(1)可知E⊥平面BEP,BE⊥EF,建立如圖所示的空間直角坐標(biāo)系,
則E(0,0,0),  (0,0,1),B(2,0,0).連接DP,由(1)知EF
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的幾何體中,四邊形是等腰梯形,,,.在梯形中,,且,⊥平面

(1)求證:;
(2)若二面角,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是正方形所在平面外一點(diǎn),且,若、分別是、的中點(diǎn).

(1)求證:
(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有下列四個(gè)命題:
①(a·b)2=a2·b2;②|a+b|>|a-b|;③|a+b|2=(a+b)2;④若a∥b,則a·b=|a|·|b|.其中真命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn).

(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正四棱錐SABCD中,O為頂點(diǎn)在底面上的射影,P為側(cè)棱SD的中點(diǎn),且SOOD,則直線BC與平面PAC所成的角是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,,則下面說法中,正確的個(gè)數(shù)是 (    )
(1)線段AB的中點(diǎn)坐標(biāo)為;(2)線段AB的長度為;
(3)到A,B兩點(diǎn)的距離相等的點(diǎn)的坐標(biāo)滿足.
A.0個(gè)B.1個(gè) C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)平面的一個(gè)法向量為,平面的一個(gè)法向量為,
,則k=                                          (  )
A.2B.-4 C.-2 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在五面體ABCDEF中,F(xiàn)A 平面ABCD, AD//BC//FE,ABAD,M為EC的中點(diǎn),AF=AB=BC=FE=AD
(1)求異面直線BF與DE所成的角的大;
(2)證明平面AMD平面CDE;
(3)求二面角A-CD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案