【題目】設(shè)函數(shù).

(1)若是函數(shù)的極值點,1為函數(shù)的一個零點,求函數(shù)上的最小值.

(2)當(dāng)時,函數(shù)軸在內(nèi)有兩個不同的交點,求的取值范圍.(其中是自然對數(shù)的底數(shù))

【答案】(1);(2).

【解析】試題分析: (1)由題,且,列式解得, ,再求導(dǎo)求函數(shù)的最小值即可.

(2)由,得,易知 ; 時, ;于是,函數(shù)單調(diào)遞減,在單調(diào)遞增,分兩種情況討論可得的取值范圍是.

試題解析:(1),∵是函數(shù)的極值點,

∵1是函數(shù)的零點,得,

,解得 ,

,

, ,得;

,

所以上單調(diào)遞減,在上單調(diào)遞增,

所以函數(shù)的最小值為.

(2)當(dāng)時, ,則

,該方程的判別式,

因為,所以由,得,易知,

時, ;于是,函數(shù)單調(diào)遞減,在單調(diào)遞增,

,則上單調(diào)遞減,不符合題意,所以,

當(dāng)時, ,又由函數(shù)軸在內(nèi)有兩個不同的交點,

所以,且,

,解得

因為,

所以,

,知函數(shù)上單調(diào)遞減,又,

所以,即,解得,

綜上所述,實數(shù)的取值范圍是.

點晴:本題考查函數(shù)導(dǎo)數(shù)與單調(diào)性,函數(shù)零點的個數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點個數(shù),如果函數(shù)較為復(fù)雜,可結(jié)合導(dǎo)數(shù)知識確定極值點和單調(diào)區(qū)間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點的問題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理. 恒成立問題以及可轉(zhuǎn)化為恒成立問題的問題,往往可利用參變分離的方法,轉(zhuǎn)化為求函數(shù)最值處理.也可構(gòu)造新函數(shù)然后利用導(dǎo)數(shù)來求解.注意利用數(shù)形結(jié)合的數(shù)學(xué)思想方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4x﹣2x+1+3,當(dāng)x∈[﹣2,1]時,f(x)的最大值為m,最小值為n,
(1)若角α的終邊經(jīng)過點P(m,n),求sinα+cosα的值;
(2)g(x)=mcos(nx+)+n,求g(x)的最大值及自變量x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,且橢圓上任意一點到兩個焦點的距離之和為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線與橢圓相交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fk(x)=xk+bx+c(k∈N* , b,c∈R),g(x)=logax(a>0,a≠1).
(1)若b+c=1,且fk(1)=g( ),求a的值;
(2)若k=2,記函數(shù)fk(x)在[﹣1,1]上的最大值為M,最小值為m,求M﹣m≤4時的b的取值范圍;
(3)判斷是否存在大于1的實數(shù)a,使得對任意x1∈[a,2a],都有x2∈[a,a2]滿足等式:g(x1)+g(x2)=p,且滿足該等式的常數(shù)p的取值唯一?若存在,求出所有符合條件的a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,BC的對邊分別為a,b,c,且(2bc)cos Aacos C

(1)求角A的大;

(2)若a=3,b=2c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點為A,右焦點為F,過點F的直線交橢圓于B,C兩點.

(1)求該橢圓的離心率;

(2)設(shè)直線ABAC分別與直線x=4交于點M,N,問:x軸上是否存在定點P使得MPNP?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究所計劃利用神七宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品、,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用、和預(yù)計產(chǎn)生收益來決定具體安排.通過調(diào)查,有關(guān)數(shù)據(jù)如下表:


產(chǎn)品A()

產(chǎn)品B()


研制成本、搭載費用之和(萬元)

20

30

計劃最大資金額300萬元

產(chǎn)品重量(千克)

10

5

最大搭載重量110千克

預(yù)計收益(萬元)

80

60


如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預(yù)計收益達到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù). 

(Ⅰ)若,證明:函數(shù)上的減函數(shù);

(Ⅱ)若曲線在點處的切線與直線平行,求的值;

(Ⅲ)若,證明: (其中…是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).

(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

同步練習(xí)冊答案