【題目】函數(shù)和都是定義在上的單調(diào)減函數(shù),且,若對于任意,存在,,使得成立,則稱是在上的“被追逐函數(shù)”,若,下述四個結(jié)論中正確的是( )
①是在上的“被追逐函數(shù)”;
②若和函數(shù)關(guān)于軸對稱,則是在上的“被追逐函數(shù)”;
③若是在上的“被追逐函數(shù)”,則;
④存在,使得是在上的“被追逐函數(shù)”.
A.①③④B.①②④C.②③D.①③
【答案】D
【解析】
先判斷與是否單調(diào)遞減,并求得最小值,再根據(jù)若是在上的“被追逐函數(shù)”,,則可用表示,利用,代入判斷其是否恒成立,即可判斷是否滿足“被追逐函數(shù)”,由此依次判斷①②③④
對于①,和在上單調(diào)遞減,且,
若是在上的“被追逐函數(shù)”,則對于任意,存在,,使得成立,即,所以,
此時,即,構(gòu)造函數(shù),則,則在上單調(diào)遞減,又,則恒成立,即,故對任意,存在,,使得成立,故①正確;
對于②,依題意,則和在上單調(diào)遞減,且,若是在上的“被追逐函數(shù)”,則對于任意,存在,,使得成立,即,所以當時,不存在,,使得成立,故②錯誤;
對于③,若是在上的“被追逐函數(shù)”,此時必有,解得,當時,和在上單調(diào)遞減,若是在上的“被追逐函數(shù)”,則對于任意,存在,,使得成立,即,所以,即,則,構(gòu)造函數(shù),則,則在上單調(diào)遞減,又,則恒成立,即,故對任意,存在,,使得成立,故③正確;
對于④,當時,,而當時,,由的任意性,不存在,使得是在上的“被追逐函數(shù)”,故④錯誤,
故選:D
科目:高中數(shù)學 來源: 題型:
【題目】2020年1月1日《天津日報》發(fā)表文章總結(jié)天津海河英才計劃成果“厚植熱土 讓天下才天津用”——我市精細服務(wù)海河英才優(yōu)化引才結(jié)構(gòu).“海河英才”行動計劃,緊緊圍繞“一基地三區(qū)”定位,聚焦戰(zhàn)略性新興產(chǎn)業(yè)人才需求,大力、大膽集聚人才.政策實施1年半以來,截至2019年11月30日,累計引進各類人才落戶23.5萬人.具體比例如圖所示,新引進兩院院士,長江學者,杰出青年科學基金獲得者等頂尖領(lǐng)軍人才112人.記者李軍計劃從人才庫中隨機選取一部分英才進行跟蹤調(diào)查采訪.
(1)李軍抽取了8人其中學歷型人才4人,技能型人才3人,資格型人才1人,周二和周五隨機進行采訪,每天4人(4人順序任意),周五采訪學歷型人才人數(shù)不超過2人的概率;
(2)李軍抽取不同類型的人才有不同的采訪補貼,學歷型人才500元/人,技能型人才400元/人,資格型人才600元/人,則創(chuàng)業(yè)型急需型人才最少補貼多少元/人使每名人才平均采訪補貼費用大于等于500元/人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,且與的圖象有一條斜率為1的公切線(e為自然對數(shù)的底數(shù)).
(1)求;
(2)設(shè)函數(shù),證明:當時,有且僅有2個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進的次數(shù)之和不少于次稱為“優(yōu)秀小組”.小明與小亮同一小組,小明、小亮投籃投進的概率分別為.
(1)若,,則在第一輪游戲他們獲“優(yōu)秀小組”的概率;
(2)若則游戲中小明小亮小組要想獲得“優(yōu)秀小組”次數(shù)為次,則理論上至少要進行多少輪游戲才行?并求此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年底,武漢發(fā)生“新型冠狀病毒”肺炎疫情,國家衛(wèi)健委緊急部署,從多省調(diào)派醫(yī)務(wù)工作者前去支援,正值農(nóng)歷春節(jié)舉家團圓之際,他們成為“最美逆行者”.武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者疑似的新冠肺炎患者無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶不漏一人.若在排查期間,某小區(qū)有5人被確認為“確診患者的密切接觸者”,現(xiàn)醫(yī)護人員要對這5人隨機進行逐一“核糖核酸”檢測,只要出現(xiàn)一例陽性,則將該小區(qū)確定為“感染高危小區(qū)”.假設(shè)每人被確診的概率均為且相互獨立,若當時,至少檢測了4人該小區(qū)被確定為“感染高危小區(qū)”的概率取得最大值,則____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正四棱錐的側(cè)棱和底面邊長相等,在這個正四棱錐的條棱中任取兩條,按下列方式定義隨機變量的值:
若這兩條棱所在的直線相交,則的值是這兩條棱所在直線的夾角大。ɑ《戎疲;
若這兩條棱所在的直線平行,則;
若這兩條棱所在的直線異面,則的值是這兩條棱所在直線所成角的大小(弧度制).
(1)求的值;
(2)求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓的離心率,左焦點為,右頂點為,過點的直線交橢圓于兩點,若直線垂直于軸時,有.
(1)求橢圓的方程;
(2)設(shè)直線: 上兩點, 關(guān)于軸對稱,直線與橢圓相交于點(異于點),直線與軸相交于點.若的面積為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com