已知數(shù)列滿足:數(shù)列滿足。
(1)若是等差數(shù)列,且求的值及的通項公式;
解析試題分析:(1)由數(shù)列是等差數(shù)列,以及已知,不難用表示出,又由,可得到,這樣就可求出的值,根據(jù)等差數(shù)列的通項公式,即可求得的通項公式; (2)由是等比數(shù)列且,易得,兩式相比得,由此推出的值,又如數(shù)列是等比數(shù)列,則可由假設(shè)推出的表達(dá)式,由這兩式相等可得到關(guān)于的一元二次方程,可利用與的關(guān)系來判斷方程解的情況,從而確定是否存在.
試題解析:解:(1)是等差數(shù)列,. 2分
又,解得,
. 6分
(2)數(shù)列不能為等比數(shù)列. 8分
, 10分
假設(shè)數(shù)列能為等比數(shù)列,由, 12分
,此方程無解,數(shù)列一定不能為等比數(shù)列. 14分
考點(diǎn):1.等差數(shù)列的通項公式;2.等比數(shù)列的定義
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前n項和為,且,.
(1)求數(shù)列的通項;(2)設(shè),求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列,公差不為零,,且成等比數(shù)列;
⑴求數(shù)列的通項公式;
⑵設(shè)數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知單調(diào)遞增的等比數(shù)列滿足:,且是的等差中項.
(1)求數(shù)列的通項公式;
(2)若,,求使成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如果項數(shù)均為的兩個數(shù)列滿足且集合,則稱數(shù)列是一對“項相關(guān)數(shù)列”.
(Ⅰ)設(shè)是一對“4項相關(guān)數(shù)列”,求和的值,并寫出一對“項
關(guān)數(shù)列”;
(Ⅱ)是否存在“項相關(guān)數(shù)列”?若存在,試寫出一對;若不存在,請說明理由;
(Ⅲ)對于確定的,若存在“項相關(guān)數(shù)列”,試證明符合條件的“項相關(guān)數(shù)列”有偶數(shù)對.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是數(shù)列的前項和,,,.
(1)求證:數(shù)列是等差數(shù)列,并的通項;
(2)設(shè),求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com