【題目】已知橢圓 的左、右焦點(diǎn)分別為 , .過 且斜率為 的直線 與橢圓 相交于點(diǎn) , .當(dāng) 時(shí),四邊形 恰在以 為直徑,面積為 的圓上.
(Ⅰ)求橢圓 的方程;
(Ⅱ)若 ,求直線 的方程.

【答案】解:(Ⅰ)當(dāng) 時(shí),直線 軸,
又四邊形 恰在以 為直徑,面積為 的圓上,
∴四邊形 為矩形,且
∴點(diǎn) 的坐標(biāo)為
,

設(shè) ,則
中, ,
,

,
∴橢圓 的方程為

(Ⅱ)將 與橢圓方程聯(lián)立得 ,
設(shè) , ,得


,
,

解得 ,
∴直線 的方程為
【解析】本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查橢圓與直線的位置關(guān)系,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)、韋達(dá)定理、橢圓與直線的位置關(guān)系的合理運(yùn)用.直線與圓錐曲線的綜合問題是高考的必考點(diǎn),比方說求封閉面積,求距離,求他們的關(guān)系等等,常用的方法就是聯(lián)立方程求出交點(diǎn)的橫坐標(biāo)或者縱坐標(biāo)的關(guān)系,通過這兩個(gè)關(guān)系的變形去求解.
【考點(diǎn)精析】關(guān)于本題考查的橢圓的標(biāo)準(zhǔn)方程,需要了解橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同時(shí)滿足條件:
x∈R,f(x)<0或g(x)<0;
x∈(-∞,-4),f(x)g(x)<0,則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長速度v(單位:千克/年)是養(yǎng)殖密度x(單位:尾/立方米)的函數(shù).當(dāng)x不超過4尾/立方米時(shí),v的值為2千克/年;當(dāng)4<x≤20時(shí),v是x的一次函數(shù),當(dāng)x達(dá)到20尾/立方米時(shí),因缺氧等原因,v的值為0千克/年.
(1)當(dāng)0<x≤20時(shí),求函數(shù)v關(guān)于x的函數(shù)表達(dá)式;
(2)當(dāng)養(yǎng)殖密度x為多大時(shí),魚的年生長量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確命題的個(gè)數(shù)是( ) ①對于命題p:x∈R,使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為 =1.23x+0.08;
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.
A.1
B.3
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《孫子算經(jīng)》中有如下問題:“今有三女,長女五日一歸,中女四日一歸,少女三日一歸.問:三女何日相會(huì)?” 意思是:“一家出嫁的三個(gè)女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個(gè)女兒從娘家同一天走后,至少再隔多少天三人再次相會(huì)?”假如回娘家當(dāng)天均回夫家,若當(dāng)?shù)仫L(fēng)俗正月初二都要回娘家,則從正月初三算起的一百天內(nèi),有女兒回娘家的天數(shù)有( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓和雙曲線有共同焦點(diǎn) , 是它們的一個(gè)交點(diǎn),且 ,記橢圓和雙曲線的離心率分別為 ,則 的最大值為( )
A.
B.
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=ln(x2﹣2x﹣8)的單調(diào)遞增區(qū)間是( )
A.(﹣∞,﹣2)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)F作直線l與拋物線分別交于兩點(diǎn)A,B,若點(diǎn)M滿足 = + ),過M作y軸的垂線與拋物線交于點(diǎn)P,若|PF|=2,則M點(diǎn)的橫坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖直三棱柱 中, 為邊長為2的等邊三角形, ,點(diǎn) 、 、 、 、 分別是邊 、 、 、 、 的中點(diǎn),動(dòng)點(diǎn) 在四邊形 內(nèi)部運(yùn)動(dòng),并且始終有 平面 ,則動(dòng)點(diǎn) 的軌跡長度為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案