【題目】某公司制造兩種電子設(shè)備:影片播放器和音樂(lè)播放器.在每天生產(chǎn)結(jié)束后,要對(duì)產(chǎn)品進(jìn)行檢測(cè),故障的播放器會(huì)被移除進(jìn)行修復(fù). 下表顯示各播放器每天制造的平均數(shù)量以及平均故障率.

商品類型

播放器每天平均產(chǎn)量

播放器每天平均故障率

影片播放器

3000

4%

音樂(lè)播放器

9000

3%

下面是關(guān)于公司每天生產(chǎn)量的敘述:

①每天生產(chǎn)的播放器有三分之一是影片播放器;

②在任何一批數(shù)量為100的影片播放器中,恰好有4個(gè)會(huì)是故障的;

③如果從每天生產(chǎn)的音樂(lè)播放器中隨機(jī)選取一個(gè)進(jìn)行檢測(cè),此產(chǎn)品需要進(jìn)行修復(fù)的概率是0.03.

上面敘述正確的是___________.

【答案】

【解析】

根據(jù)題意逐一判斷各選項(xiàng)即可.

①每天生產(chǎn)的播放器有是影片播放器,故①錯(cuò)誤;

②在任何一批數(shù)量為100的影片播放器中,恰好有4個(gè)會(huì)是故障的是錯(cuò)誤的,4%是概率意義上的估計(jì)值,并不能保證每批都恰有4個(gè);

③因?yàn)橐魳?lè)播放器的每天平均故障率3%,所以從每天生產(chǎn)的音樂(lè)播放器中隨機(jī)選取一個(gè)進(jìn)行檢測(cè),此產(chǎn)品需要進(jìn)行修復(fù)的概率是0.03,正確.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三點(diǎn),,,曲線上任意一點(diǎn)滿足

的方程;

已知點(diǎn),動(dòng)點(diǎn) 在曲線C上,曲線C在Q處的切線與直線PA,PB都相交,交點(diǎn)分別為D,E,求的面積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過(guò)A作AE⊥CD,垂足為E,現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.

(1)求證:BC⊥面CDE;

(2)在線段AE上是否存在一點(diǎn)R,使得面BDR⊥面DCB,若存在,求出點(diǎn)R的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某學(xué)校的800名男生中隨機(jī)抽取50名測(cè)量其身高,被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分組:第一組,第二組,…,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4.

(1)請(qǐng)補(bǔ)全頻率分布直方圖并求第七組的頻率;

(2)估計(jì)該校的800名男生的身高的中位數(shù)以及身高在以上(含)的人數(shù);

(3)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為,事件,事件,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求點(diǎn)在上,點(diǎn)在上,且對(duì)角線過(guò)點(diǎn),已知米,米.

(1)要使矩形的面積大于平方米,則的長(zhǎng)應(yīng)在什么范圍內(nèi)?

(2)當(dāng)的長(zhǎng)度是多少時(shí),矩形花壇的面積最小?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,PA⊥平面ABCDCDAD,BCAD.

(Ⅰ)求證:CDPD;

(Ⅱ)求證:BD⊥平面PAB

(Ⅲ)在棱PD上是否存在點(diǎn)M,使CM∥平面PAB,若存在,確定點(diǎn)M的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是等差數(shù)列,是其前項(xiàng)的和,且,則下列結(jié)論錯(cuò)誤的是(

A. B. C. D. 均為的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)對(duì)任意的x∈R,都有f(﹣x)+f(x)=﹣6,且當(dāng)x≥0時(shí),f(x)=2x﹣4,定義在R上的函數(shù)g(x)=a(x﹣a)(x+a+1),兩函數(shù)同時(shí)滿足:x∈R,都有f(x)<0或g(x)<0;x∈(﹣∞,﹣1),f(x)g(x)<0,則實(shí)數(shù)a的取值范圍為(
A.(﹣3,0)
B.
C.(﹣3,﹣1)
D.(﹣3,﹣1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),討論的單調(diào)性;

(2)設(shè),當(dāng)時(shí),若對(duì)任意,存在使,求實(shí)數(shù)取值.

查看答案和解析>>

同步練習(xí)冊(cè)答案