如圖,直三棱柱中,AB=BC,,Q是AC上的點(diǎn),AB1//平面BC1Q.

(Ⅰ)確定點(diǎn)Q在AC上的位置;
(Ⅱ)若QC1與平面BB1C1C所成角的正弦值為,求二面角Q-BC1—C的余弦值.
(Ⅰ)Q為AC的中點(diǎn); (Ⅱ)二面角Q-BC1-C的余弦值為

試題分析:(Ⅰ)借助直線AB1∥平面BC1Q,利用面面平行的性質(zhì)定理可知AB1∥PQ,然后確定點(diǎn)Q的位置;(Ⅱ)利用空間向量的方法求解,分別求出面BC1C的法向量為m=(1,0,0)和 平面C1BQ的法向量n=(1,-,2),然后利用向量的夾角公式計(jì)算二面角Q-BC1-C的余弦值.
試題解析:(Ⅰ)連接B1C交BC1于點(diǎn)P,連接PQ.
因?yàn)橹本AB1∥平面BC1Q,AB1Ì平面AB1C,平面BC1Q∩平面AB1C=PQ,
所以AB1∥PQ.
因?yàn)镻為B1C的中點(diǎn),且AB1∥PQ,
所以,Q為AC的中點(diǎn).      
(Ⅱ)如圖建立空間直角坐標(biāo)系.

設(shè)AB=BC=a,BB1=b,則
面BC1C的法向量為m=(1,0,0).
B(0,0,0),C1(0,a,b),Q(a, a,0),
=(0,a,b),=(-a, a,b).
因QC1與面BC1C所成角的正弦值為
,解得b=a.
設(shè)平面C1BQ的法向量n=(x,y,z),則
取n=(1,-,2).
所以有cosám,nñ=
故二面角Q-BC1-C的余弦值為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐中,底面是正方形,側(cè)面是正三角形,平面底面

(I) 證明:平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面為菱形,,的中點(diǎn)。

(1)若,求證:平面;
(2)點(diǎn)在線段上,,試確定的值,使;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

四棱錐P-ABCD中,PA⊥平面ABCD,E為AD的中點(diǎn),ABCE為菱形,∠BAD=120°,PA=AB,G、F分別是線段CE、PB的中點(diǎn).

(Ⅰ) 求證:FG∥平面PDC;
(Ⅱ) 求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形是正方形,,,

(Ⅰ)求證:平面平面;
(Ⅱ)若所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間直角坐標(biāo)系中,點(diǎn),關(guān)于軸對稱的點(diǎn)的坐標(biāo)是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是邊長為為正方形的對角線,將繞直線旋轉(zhuǎn)一周后形成的幾何體的體積等于             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,三棱柱A1B1C1—ABC的三視圖中,正(主)視圖和側(cè)(左)視圖是全等的矩形,俯視圖是等腰直角三角形,點(diǎn)M是A1B1的中點(diǎn).

(1)求證:B1C∥平面AC1M;
(2)求證:平面AC1M⊥平面AA1B1B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐A-BCD中,△ABD和△BCD是兩個全等的等腰直角三角形,O為BD的中點(diǎn),且AB=AD=CB=CD=2,AC=

(1)當(dāng)時,求證:AO⊥平面BCD;
(2)當(dāng)二面角的大小為時,求二面角的正切值.

查看答案和解析>>

同步練習(xí)冊答案