【題目】已知橢圓的短軸長為,左右焦點(diǎn)分別為,,點(diǎn)是橢圓上位于第一象限的任一點(diǎn),且當(dāng)時(shí),.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若橢圓上點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,過點(diǎn)垂直于軸,垂足為,連接并延長交于另一點(diǎn),交軸于點(diǎn).

(。┣面積最大值;

(ⅱ)證明:直線斜率之積為定值.

【答案】1;(2)(。;(ⅱ)證明見解析.

【解析】

1)由解方程組即可得到答案;

2)()設(shè),則,,易得,注意到,利用基本不等式得到的最大值即可得到答案;()設(shè)直線斜率為,直線方程為,聯(lián)立橢圓方程得到的坐標(biāo),再利用兩點(diǎn)的斜率公式計(jì)算即可.

1)設(shè),由,得.

代入,得,即,

,解得,

所以橢圓的標(biāo)準(zhǔn)方程為.

2)設(shè),,則,

(。┮字的中位線,所以,

所以,

滿足,所以

,得,

,當(dāng)且僅當(dāng),即,時(shí)取等號(hào),

所以面積最大值為.

(ⅱ)記直線斜率為,則直線斜率為,

所以直線方程為.

,得,

由韋達(dá)定理得,所以,

代入直線方程,得,

于是,直線斜率,

所以直線斜率之積為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,平面,.

1)在棱上是否存在一點(diǎn),使得平面?請(qǐng)證明你的結(jié)論;

2)求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在以ABCDEF為頂點(diǎn)的五面體中,底面ABCD為菱形,∠ABC120°,ABAEED2EFEFAB,點(diǎn)GCD中點(diǎn),平面EAD⊥平面ABCD.

1)證明:BDEG;

2)若三棱錐,求菱形ABCD的邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,的面積為1,且橢圓的離心率為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)點(diǎn)在橢圓上且位于第二象限,過點(diǎn)作直線,過點(diǎn)作直線,若直線的交點(diǎn)恰好也在橢圓上,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解家長對(duì)學(xué)校食堂的滿意情況,分別從高一、高二年級(jí)隨機(jī)抽取了20位家長的滿意度評(píng)分,其頻數(shù)分布表如下:

滿意度評(píng)分分組

合計(jì)

高一

1

3

6

6

4

20

高二

2

6

5

5

2

20

根據(jù)評(píng)分,將家長的滿意度從低到高分為三個(gè)等級(jí):

滿意度評(píng)分

評(píng)分70

70評(píng)分90

評(píng)分90

滿意度等級(jí)

不滿意

滿意

非常滿意

假設(shè)兩個(gè)年級(jí)家長的評(píng)價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級(jí)各隨機(jī)抽取1名家長,記事件:“高一家長的滿意度等級(jí)高于高二家長的滿意度等級(jí)”,則事件發(fā)生的概率為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且.

求證:(1)直線DE平面A1C1F;

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分13分)

某食品廠進(jìn)行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工費(fèi)為元(為常數(shù),且,設(shè)該食品廠每公斤蘑菇的出廠價(jià)為元(),根據(jù)市場調(diào)查,銷售量成反比,當(dāng)每公斤蘑菇的出廠價(jià)為30元時(shí),日銷售量為100公斤.

)求該工廠的每日利潤元與每公斤蘑菇的出廠價(jià)元的函數(shù)關(guān)系式;

)若,當(dāng)每公斤蘑菇的出廠價(jià)為多少元時(shí),該工廠的利潤最大,并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發(fā)了廣大群眾的思考——如何做一個(gè)文明的乘客.全國各地大部分社區(qū)組織居民學(xué)習(xí)了文明乘車規(guī)范.社區(qū)委員會(huì)針對(duì)居民的學(xué)習(xí)結(jié)果進(jìn)行了相關(guān)的問卷調(diào)查,并將得到的分?jǐn)?shù)整理成如圖所示的統(tǒng)計(jì)圖.

(Ⅰ)求得分在上的頻率;

(Ⅱ)求社區(qū)居民問卷調(diào)查的平均得分的估計(jì)值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)

(Ⅲ)以頻率估計(jì)概率,若在全部參與學(xué)習(xí)的居民中隨機(jī)抽取5人參加問卷調(diào)查,記得分在間的人數(shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)=x2+blnx+1),其中b0

1)若b=﹣12,求fx)在[1,3]的最小值;

2)如果fx)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案