【題目】已知數(shù)列的前項和為,且.其中為常數(shù).
(1)求的值及數(shù)列的通項公式;
(2)記,數(shù)列的前項和為,若不等式對任意恒成立 ,求實數(shù)的取值范圍.
【答案】(1),;(2)
【解析】
(1)由題意知中,令,求得,即,所以兩式相減整理得,利用等比數(shù)列的通項公式,即可求解.
(2)由(1)可得,利用“裂項”法求得,根據(jù)題設化簡得對任意恒成立,記,分為奇數(shù)和為偶數(shù)討論,求得的最大值,即可求解.
(1)由題意知中,令,得,又,解得,
即,所以,
兩式相減得,整理得,
數(shù)列是以,公比為2的等比數(shù)列,所以.
(2)由(1)可得,
所以,
由對任意恒成立,
得對任意恒成立,
記,,
(1)當為偶數(shù)時,,
若,則,又,所以.
(2)當為奇數(shù)時,,則,
若,為奇數(shù),則,即,
若,為奇數(shù),則,即,所以,
綜合(1)(2)知,
所以實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,曲線C:(x﹣1)2+y2=1.直線l經(jīng)過點P(m,0),且傾斜角為 .以O為極點,以x軸正半軸為極軸,建立坐標系.
(Ⅰ)寫出曲線C的極坐標方程與直線l的參數(shù)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點,且|PA||PB|=1,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù))與的圖象上存在關于軸對稱的點,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點。
求證:(1)PA∥平面BDE ;
(2)平面PAC平面BDE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) . (I)求函數(shù)f(x)的最小正周期和最小值;
(II)在△ABC中,A,B,C的對邊分別為a,b,c,已知 ,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=xex(e為自然對數(shù)的底數(shù)),g(x)=(x+1)2 . (I)記 .
(i)討論函數(shù)F(x)單調(diào)性;
(ii)證明當m>0時,F(xiàn)(﹣1+m)>F(﹣1﹣m)恒成立;
(II)令G(x)=af(x)+g(x)(a∈R),設函數(shù)G(x)有兩個零點,求參數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,,底面,,直線與底面所成的角為,分別是的中點.
(1)求證:直線平面;
(2)若,求證:直線平面;
(3)若,求棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓M: + =1(a>0)的一個焦點為F(﹣1,0),左右頂點分別為A,B,經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(Ⅰ)求橢圓方程;
(Ⅱ)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
如圖在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的
中點.
(1) 求證: AC⊥BC1
(2) 求證:AC1∥平面CDB1
(3) 求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com