已知函數(shù)f(x)=
1
3
x3-
1
2
(a-3)x2-a(2a-3)x+b在(-1,1)上不單調(diào),求實(shí)數(shù)a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:函數(shù)f(x)在區(qū)間(-1,1)上不單調(diào)?f'(x)=0在(-1,1)上有實(shí)根,且無(wú)重根,結(jié)合二次函數(shù)在(-1,1)上的圖象求解.
解答: 解:∵f(x)=
1
3
x3-
1
2
(a-3)x2-a(2a-3)x+b,
∴f'(x)=x2-(a-3)x-a(2a-3)
若函數(shù)f(x)在(-1,1)上不單調(diào),則方程f'(x)=0在(-1,1)上有實(shí)根,且無(wú)重根
由f'(x)=0,得x1=-a,x2=2a-3,
∴-1<-a<1或-1<2a-3<1,
∴-1<a<1或1<a<2,
又-a≠2a-3,∴a≠1.
∴實(shí)數(shù)a的取值范圍為-1<a<1或1<a<2.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)f(x)在(-1,1)上不單調(diào),則方程f'(x)=0在(-1,1)上有實(shí)根,且無(wú)重根,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=|tan2x|是(  )
A、周期為π的奇函數(shù)
B、周期為π的偶函數(shù)
C、周期為
π
2
的奇函數(shù)
D、周期為
π
2
的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二階矩陣M滿足:M
01
12
=
12
01

(Ⅰ)求矩陣M2;       
(Ⅱ)求M2014
2
-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩形紙片AA′A1′A1,點(diǎn)B、C、B1、C1分別為AA′、A1A1′的三等分點(diǎn),將矩形紙片沿BB1、CC1折成圖2所示的三棱柱ABC-A1B1C1,若面對(duì)角線AB1⊥BC1,求證:A1C⊥AB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x2-(k+1)x+k
(1)若關(guān)于x的不等式f(x)<0為(1,2),求實(shí)數(shù)k的值;
(2)設(shè)k>1且k≠2,求關(guān)于x的不等式
f(x)
2-x
<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知an=3n-(-2)n,求證:
1
a1
+
1
a2
+…+
1
an
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高一年級(jí)有2000名學(xué)生,從中隨機(jī)抽出60名學(xué)生,將這60名學(xué)生的某次數(shù)學(xué)考試成績(jī)(百分制)分成六段[40,50),[50,60),…,[90,100]后,得到如圖所示的頻率分布直方圖,觀察圖形的信息,回答下列問(wèn)題:
(1)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)根據(jù)頻率分布直方圖推測(cè),高一年級(jí)2000名學(xué)生在該次數(shù)學(xué)考試中成績(jī)低于60分的人數(shù);
(3)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,請(qǐng)根據(jù)頻率分布直方圖估計(jì)高一年級(jí)該次數(shù)學(xué)考試的平均成績(jī).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2+ax+a)ex(e為自然對(duì)數(shù)的底數(shù)).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)在R上是單調(diào)增函數(shù)?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=logax(a>0,且a≠1)在區(qū)間[2,8]上的最大值為6,則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案