【題目】心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時(shí)間,上課開始時(shí),學(xué)生的興趣激增,中間有一段不太長的時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,并趨于穩(wěn)定.分析結(jié)果和實(shí)驗(yàn)表明,設(shè)提出和講述概念的時(shí)間為(單位:分),學(xué)生的接受能力為值越大,表示接受能力越強(qiáng)),

(1)開講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?

(2)試比較開講后5分鐘、20分鐘、35分鐘,學(xué)生的接受能力的大;(3)若一個(gè)數(shù)學(xué)難題,需要56的接受能力以及12分鐘時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講述完這個(gè)難題?

【答案】(1)開講后10分鐘,學(xué)生的接受能力最強(qiáng),并能維持5分鐘.(2)從大小依次是開講后5分鐘、20分鐘、35分鐘的接受能力(3)不能

【解析】試題分析:(1)求學(xué)生的接受能力最強(qiáng)其實(shí)就是要求分段函數(shù)的最大值,方法是分別求出各段的最大值取其最大即可;(2)比較分鐘、分鐘分鐘學(xué)生的接受能力大小,方法是把代入第一段函數(shù)中,而要代入到第三段函數(shù)中,代入第四段函數(shù)比較大小即可;(3)在每一段上解不等式,求出滿足條件的,從而得到接受能力 及以上的時(shí)間,然后與進(jìn)行比較即可.

試題解析:(Ⅰ)由題意可知:

所以當(dāng)X=10時(shí), 的最大值是60,

, =60

所以開講后10分鐘,學(xué)生的接受能力最強(qiáng),并能維持5分鐘.

(Ⅱ)由題意可知:

所以開講后5分鐘、20分鐘、35分鐘的學(xué)生的接受能力從大小依次是

開講后5分鐘、20分鐘、35分鐘的接受能力;

(Ⅲ)由題意可知:

當(dāng)

解得:

當(dāng) =60>56,滿足要求;

當(dāng),

解得:

因此接受能力56及以上的時(shí)間是分鐘小于12分鐘.

所以老師不能在所需的接受能力和時(shí)間狀態(tài)下講述完這個(gè)難題 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若對,不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)記,那么當(dāng)時(shí),是否存在區(qū)間使得函數(shù)在區(qū)間上的值域恰好為?若存在,請求出區(qū)間;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一座大橋既是交通擁擠地段,又是事故多發(fā)地段,為了保證安全,交通部門規(guī)定:大橋上的車距與車速和車長的關(guān)系滿足為正的常數(shù)).假定車身長為,當(dāng)車速為時(shí),車距為個(gè)車身長.

(1)寫出車距關(guān)于車速的函數(shù)關(guān)系式;

(2)應(yīng)規(guī)定怎樣的車速,才能使大橋上每小時(shí)通過的車輛最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐PABCD中,底面是邊長為a的正方形,側(cè)棱PDaPAPCa,

(1)求證:PD⊥平面ABCD;

(2)求證:平面PAC⊥平面PBD

(3)求二面角PACD的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在12件同類型的零件中有2件次品,抽取3次進(jìn)行檢驗(yàn),每次抽取1件,并且取出后不再放回,若以ξ和η分別表示取到的次品數(shù)和正品數(shù).

1求ξ的分布列、均值和方差;

2求η的分布列、均值和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E為正方形ABCDCD上異于點(diǎn)C,D的動(dòng)點(diǎn),將ADE沿AE翻折成SAE,使得平面SAE平面ABCE,則下列三個(gè)說法中正確的個(gè)數(shù)是

存在點(diǎn)E使得直線SA平面SBC

平面SBC內(nèi)存在直線與SA平行

平面ABCE內(nèi)存在直線與平面SAE平行

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線),焦點(diǎn)到準(zhǔn)線的距離為,過點(diǎn)作直線交拋物線于點(diǎn)(點(diǎn)在第一象限).

()若點(diǎn)焦點(diǎn)重合,且弦長,求直線的方程;

()若點(diǎn)關(guān)于軸的對稱點(diǎn)為,直線x軸于點(diǎn),且,求證:點(diǎn)B的坐標(biāo)是,并求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),橢圓的離心率為是橢圓的焦點(diǎn),直線的斜率為為坐標(biāo)原點(diǎn).

()的方程;

)設(shè)過點(diǎn)的直線相交于兩點(diǎn),當(dāng)的面積最大時(shí),求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1處取得極小值,求的值;

2上恒成立,求的取值范圍;

3求證:當(dāng)時(shí),.

查看答案和解析>>

同步練習(xí)冊答案