【題目】已知函數(shù)

時,證明:函數(shù)不是奇函數(shù);

若函數(shù)是奇函數(shù),求的值;

的條件下,解不等式

【答案】1)證明見解析;(2;(3.

【解析】

試題(1)證明函數(shù)不是奇函數(shù),只要找出關(guān)于原點對稱的兩個點的函數(shù)值不等即可;

2)方法一:由奇函數(shù)的定義,,代入進行化簡,對恒成立即可得出m,n的值;方法二:由奇函數(shù)的性質(zhì)知,代入函數(shù)解析式解得,函數(shù)解析式可化為,又由,將m,n的值代入解析式,再利用奇函數(shù)的定義檢驗即可;

3)由(2)可知的關(guān)系式,由R上是單調(diào)減函數(shù),且函數(shù)為奇函數(shù),由,得,即可解得不等式.

試題解析:

:1)當時,,

函數(shù)不是奇函數(shù)。

2)方法一:

由定義在R上的函數(shù)是奇函數(shù)得對一切恒成立

,

整理得對任意恒成立,

,解得,

方法二:由題意可知,此時,

又由,

此時,經(jīng)檢驗滿足符合題意。

3)由R上是單調(diào)減函數(shù),

又因為函數(shù)為奇函數(shù)且,由

化簡得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(l,2)在函數(shù)f(x)=ax3的圖象上,則過點A的曲線C:y=fx)的切線方程是( 。

A. 6x﹣y﹣4=0 B. x﹣4y+7=0

C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】楊輝三角,是二項式系數(shù)在三角形中的一種幾何排列。在歐洲,這個表叫做帕斯卡三角形帕斯卡(1623----1662)是在1654年發(fā)現(xiàn)這一規(guī)律的,比楊輝要遲393年,比賈憲遲600年。右圖的表在我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里就出現(xiàn)了,這又是我國數(shù)學(xué)史上的一個偉大成就。如圖所示,在“楊輝三角”中,從1開始箭頭所指的數(shù)組成一個鋸齒形數(shù)列:1,2,3,3,6,4,10,5,…,則此數(shù)列前16項和為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自2016年底,共享單車日漸火爆起來,逐漸融入大家的日常生活中,某市針對18歲到80歲之間的不同年齡段的城市市民使用共享單車情況進行了抽樣調(diào)查,結(jié)果如下表所示:

(1)采用分層抽樣的方式從年齡在內(nèi)的人中抽取人,求其中男性、女性的使用人數(shù)各為多少?

(2)在(1)中選出人中隨機抽取4人,求其中恰有2人是女性的概率;

(3)用樣本估計總體,在全市18歲到80歲的市民中抽4人其中男性使用的人數(shù)記為,求的分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子產(chǎn)品生產(chǎn)企業(yè)生產(chǎn)一種產(chǎn)品,原計劃每天可以生產(chǎn)噸產(chǎn)品,每噸產(chǎn)品可以獲得凈利潤萬元,其中,由于受市場低迷的影響,該企業(yè)的凈利潤出現(xiàn)較大幅度下滑.為提升利潤,該企業(yè)決定每天投入20萬元作為獎金刺激生產(chǎn).在此方案影響下預(yù)計每天可增產(chǎn)噸產(chǎn)品,但是受原材料數(shù)量限制,增產(chǎn)量不會超過原計劃每天產(chǎn)量的四分之一.試求在每天投入20萬元獎金的情況下,該企業(yè)每天至少可獲得多少利潤(假定每天生產(chǎn)出來的產(chǎn)品都能銷售出去)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Ox2+y28內(nèi)有一點P0(﹣1,2),AB為過點P0且傾斜角為α的弦.

1)當α135°時,求弦AB的長;

2)當弦ABP0平分時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組有男生20人,女生10人,從中抽取一個容量為5的樣本,恰好抽到2名男生和3名女生,則

①該抽樣可能是系統(tǒng)抽樣;

②該抽樣可能是隨機抽樣:

③該抽樣一定不是分層抽樣;

④本次抽樣中每個人被抽到的概率都是

其中說法正確的為( )

A.①②③B.②③C.②③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,C為直線y=5上的動點,以C為圓心的圓C截y軸所得的弦長恒為6,過原點O作圓C的一條切線,切點為P,則點P到直線3x+4y﹣25=0的距離的最小值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線,動直線過定點.

1)若直線與圓相切,求直線的方程;

2)若直線與圓相交于兩點,點的中點,直線與直線相交于點. 探索是否為定值,若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案