求lg
1
4
-lg25+ln
e
+21+log23的值.
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)的運算法則、對數(shù)恒等式即可得出.
解答: 解:原式=-2lg2-2lg5+
1
2
+2log23
=-2(lg2+lg5)+
1
2
+2×3
=-2+
1
2
+6
=
9
2
點評:本題考查了對數(shù)的運算法則、對數(shù)恒等式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點A、B分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)長軸的左、右端點,點F是橢圓的右焦點,點P(
3
2
,
5
2
3
)在橢圓上,又橢圓離心率e=
2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于|MB|,求橢圓上的點到點M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα+sinα=-
1
5
,α∈(0,π),求cos2α-sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某運輸公司今年年初用128萬元購進(jìn)一批出租車,并立即投入營運,計劃第一年維修、保險及保養(yǎng)費用4萬元,從第二年開始,每年所需維修、保險及保養(yǎng)費用比上一年增加4萬元,該批出租車使用后,每年的總收入為120萬元,設(shè)使用x年后該批出租車的盈利額為y萬元.
(Ⅰ)寫出y與x之間的函數(shù)關(guān)系式;
(Ⅱ)試確定x,使該批出租車年平均盈利額達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α-
π
8
)=
3
5
8
<α<
8
,求2sinα(sinα+cosα)-1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A、B、C的對邊分別為a、b、c,且 cos2A+4cos2
B+C
2
=
1
2

(1)求∠A;
(2)若a=5,△ABC的面積為2
3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,|
OA
|=|
OB
|=1,
OA
OB
的夾角為120°,
OC
OA
的夾角為30°,|
OC
|=5,且
OC
=m•
OA
+n•
OB
,求實數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(x-
π
4
).
(1)在如下直角坐標(biāo)系中,用“五點法”畫出函數(shù)y=f(x)在區(qū)間[0,2π]上的簡圖;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間和遞減區(qū)間.    

查看答案和解析>>

同步練習(xí)冊答案