【題目】若f(x)=x﹣1﹣alnx,g(x)= ,a<0,且對(duì)任意x1 , x2∈[3,4](x1≠x2),|f(x1)﹣f(x2)|<| |的恒成立,則實(shí)數(shù)a的取值范圍為

【答案】[3﹣ ,0)
【解析】解:易知 在x∈[3,4]上均為增函數(shù),
不妨設(shè)x1<x2 , 則 等價(jià)于 ,
;
,則h(x)在x∈[3,4]為減函數(shù),
在x∈(3,4)上恒成立,
恒成立;

,
∴u(x)為減函數(shù),∴u(x)在x∈[3,4]的最大值為
綜上,實(shí)數(shù)a的取值范圍為[3﹣ ,0).
所以答案是:[3﹣ ,0).
【考點(diǎn)精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)已知橢圓的離心率為,橢圓C長(zhǎng)軸長(zhǎng)為4

1求橢圓C的方程;

2已知直線與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB 為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:函數(shù),當(dāng)x∈(-3,2)時(shí),>0,當(dāng)x∈(-,-3)(2,+)時(shí),<0

(I)求ab的值;

(II)若不等式的解集為R,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某保險(xiǎn)的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買(mǎi)該保險(xiǎn)的投保人成為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:

一年內(nèi)出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

概率

0.30

0.15

0.20

0.20

0.10

0.05


(1)求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;
(2)若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出60%的概率;
(3)求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=blnx,g(x)=ax2﹣x(a∈R).
(1)若曲線f(x)與g(x)在公共點(diǎn)A(1,0)處有相同的切線,求實(shí)數(shù)a、b的值;
(2)在(1)的條件下,證明f(x)≤g(x)在(0,+∞)上恒成立;
(3)若a=1,b>2e,求方程f(x)﹣g(x)=x在區(qū)間(1,eb)內(nèi)實(shí)根的個(gè)數(shù)(e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某廣場(chǎng)中間有一塊邊長(zhǎng)為2百米的菱形狀綠化區(qū)ABCD,其中BMN是半徑為1百米的扇形,∠ABC= .管理部門(mén)欲在該地從M到D修建小路:在 上選一點(diǎn)P(異于M,N兩點(diǎn)),過(guò)點(diǎn)P修建與BC平行的小路PQ.

(1)若∠PBC= ,求PQ的長(zhǎng)度;
(2)當(dāng)點(diǎn)P選擇在何處時(shí),才能使得修建的小路 與PQ及QD的總長(zhǎng)最?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知整數(shù)n≥4,集合M={1,2,3,…,n}的所有含有4個(gè)元素的子集記為A1 , A2 , A3 , …,
設(shè)A1 , A2 , A3 , …, 中所有元素之和為Sn
(1)求S4 , S5 , S6并求出Sn;
(2)證明:S4+S5+…+Sn=10Cn+26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 , 是非零不共線的向量,設(shè) = + ,定義點(diǎn)集M={K| = },當(dāng)K1 , K2∈M時(shí),若對(duì)于任意的r≥2,不等式| |≤c| |恒成立,則實(shí)數(shù)c的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】去年“十一”期間,昆曲高速公路車(chē)輛較多.某調(diào)查公司在曲靖收費(fèi)站從7座以下小型汽車(chē)中按進(jìn)收費(fèi)站的先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛汽車(chē)進(jìn)行抽樣調(diào)查,將他們?cè)谀扯胃咚俟返能?chē)速()分成六段:,,,,后,得到如圖的頻率分布直方圖.

(I)調(diào)查公司在抽樣時(shí)用到的是哪種抽樣方法?

(II)求這40輛小型汽車(chē)車(chē)速的眾數(shù)和中位數(shù)的估計(jì)值;

(III)若從這40輛車(chē)速在的小型汽車(chē)中任意抽取2輛,求抽出的2輛車(chē)車(chē)速都在的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案