【題目】國內某汽車品牌一個月內被消費者投訴的次數(shù)用表示,據統(tǒng)計,隨機變量的概率分布如下:
(1)求的值;
(2)假設一月與二月被消費者投訴的次數(shù)互不影響,求該汽車品牌在這兩個月內被消費者投訴次的概率.
【答案】(1)a=0.2,(2)0.17.
【解析】試題分析:(1)根據分布列的性質可得0.1+0.3+2a+a=1(2)根據題意問題將分為兩類“兩個月內有一個月被投訴2次,另外一個月被投訴0次”, “兩個月內每月均被投訴1次”然后根據投訴概率列式解答
試題解析:
解:(1)由概率分布的性質有0.1+0.3+2a+a=1,解答a=0.2,
所以X的概率分布為
X | 0 | 1 | 2 | 3 |
P | 0.1 | 0.3 | 0.4 | 0.2 |
(2)設事件A表示“兩個月內共被投訴2次”,事件表示“兩個月內有一個月被投訴2次,另外一個月被投訴0次”,事件表示“兩個月內每月均被投訴1次”
則由事件的獨立性得 ,
所以.
故該企業(yè)在這兩個月內共被消費者投訴2次的概率為0.17.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若,且在上單調遞增,求實數(shù)的取值范圍
(2)是否存在實數(shù),使得函數(shù)在上的最小值為?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是兩條不同的直線, 是三個不同的平面,給出下列四個命題:
①若,則 ②若,則
③若,則 ④若,則
其中正確命題的序號是( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知曲線,以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的倍后得到曲線.試寫出直線的直角坐標方程和曲線的參數(shù)方程:
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足:
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若存在,使得 成等差數(shù)列,試判斷:對于任意的,且是否成等差數(shù)列,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司做了用戶對其產品滿意度的問卷調查,隨機抽取了20名用戶的評分,得到圖3所示莖葉圖,對不低于75的評分,認為用戶對產品滿意,否則,認為不滿意,
(Ⅰ)根據以上資料完成下面的2×2列聯(lián)表,若據此數(shù)據算得,則在犯錯的概率不超過5%的前提下,你是否認為“滿意與否”與“性別”有關?
附:
(Ⅱ) 估計用戶對該公司的產品“滿意”的概率;
(Ⅲ) 該公司為對客戶做進一步的調查,從上述對其產品滿意的用戶中再隨機選取2人,求這兩人都是男用戶或都是女用戶的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為實數(shù).
(Ⅰ)當時,求函數(shù)在上的最大值和最小值;
(Ⅱ)求函數(shù)的單調遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣﹣(a+2)lnx,其中實數(shù)a≥0.
(1)若a=0,求函數(shù)f(x)在x∈[1,3]上的最值;
(2)若a>0,討論函數(shù)f(x)的單調性.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com