【題目】橢圓的右焦點(diǎn)為,左頂點(diǎn)為,線段的中點(diǎn)為,圓過(guò)點(diǎn),且與交于, 是等腰直角三角形,則圓的標(biāo)準(zhǔn)方程是____________
【答案】
【解析】
設(shè)A(﹣a,0),求得AF的中點(diǎn)B的坐標(biāo),可得圓F的半徑和方程,設(shè)D(m,n),(m>0,n>0),E(m,﹣n),由△BDE為等腰直角三角形,可得m,n的關(guān)系,將D的坐標(biāo)代入圓的方程,解方程可得m=1,求出n,代入橢圓方程,解方程可得a=2,即可得到圓F的方程.
如圖設(shè)A(﹣a,0),可得a>1,c=1,b2=a2﹣1,
線段AF的中點(diǎn)為B(,0),
圓F的圓心為F(1,0),半徑r=|BF|,
設(shè)D(m,n),(m>0,n>0),E(m,﹣n),
由△BDE為等腰直角三角形,可得kBD=1,
即1,即n=m,
由D在圓F:(x﹣1)2+y2=()2上,
可得(m﹣1)2+(m)2=()2,
化簡(jiǎn)可得(m﹣1)(2m﹣1+a)=0,
解得m=1或m(舍去),
則n,
將D(1,)代入橢圓方程,可得
1,
化簡(jiǎn)可得a=2或(舍去),
則圓F的標(biāo)準(zhǔn)方程為(x﹣1)2+y2,
故答案為:(x﹣1)2+y2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)圖像在點(diǎn)處的切線;
(2)求函數(shù)的單調(diào)遞減區(qū)間;
(3)若函數(shù)的在區(qū)間的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間及極值;
(2)當(dāng)時(shí),函數(shù)(其中)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,轎車(chē)已成為人們上班代步的一種重要工具.現(xiàn)將某人三年以來(lái)每周開(kāi)車(chē)從家到公司的時(shí)間之和統(tǒng)計(jì)如圖所示.
(1)求此人這三年以來(lái)每周開(kāi)車(chē)從家到公司的時(shí)間之和在(時(shí))內(nèi)的頻率;
(2)求此人這三年以來(lái)每周開(kāi)車(chē)從家到公司的時(shí)間之和的平均數(shù)(每組取該組的中間值作代表);
(3)以頻率估計(jì)概率,記此人在接下來(lái)的四周內(nèi)每周開(kāi)車(chē)從家到公司的時(shí)間之和在(時(shí))內(nèi)的周數(shù)為,求的分布列以及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】黨的十九大報(bào)告明確指出要堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),讓貧困人口和貧困地區(qū)同全國(guó)一道進(jìn)入全面小康社會(huì),要?jiǎng)訂T全黨全國(guó)全社會(huì)力量,堅(jiān)持精準(zhǔn)扶貧、精準(zhǔn)脫貧,確保到2020年我國(guó)現(xiàn)行標(biāo)準(zhǔn)下農(nóng)村貧困人口實(shí)現(xiàn)脫貧.現(xiàn)有扶貧工作組到某山區(qū)貧困村實(shí)施脫貧工作.經(jīng)摸底排查,該村現(xiàn)有貧困農(nóng)戶100戶,他們均從事水果種植,2017年底該村平均每戶年純收入為1萬(wàn)元,扶貧工作組一方面請(qǐng)有關(guān)專(zhuān)家對(duì)水果進(jìn)行品種改良,提高產(chǎn)量;另一方面,抽出部分農(nóng)戶從事水果包裝、銷(xiāo)售工作,其戶數(shù)必須小于種植的戶數(shù).從2018年初開(kāi)始,若該村抽出戶(,)從事水果包裝、銷(xiāo)售.經(jīng)測(cè)算,剩下從事水果種植農(nóng)戶的年純收入每戶平均比上一年提高,而從事包裝銷(xiāo)售農(nóng)戶的年純收入每戶平均為萬(wàn)元.(參考數(shù)據(jù):,,,).
(1)至2018年底,該村每戶年均純收入能否達(dá)到1.32萬(wàn)元?若能,請(qǐng)求出從事包裝、銷(xiāo)售的戶數(shù);若不能,請(qǐng)說(shuō)明理由;
(2)至2020年底,為使從事水果種植農(nóng)戶能實(shí)現(xiàn)脫貧(即每戶(水果種植農(nóng)戶)年均純收入不低于1.6萬(wàn)元),至少要抽出多少戶從事包裝、銷(xiāo)售工作?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正四棱柱中,底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為4,、分別為棱、的中點(diǎn),;
(1)求直線與平面所成角的大;
(2)求點(diǎn)到平面的距離;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù). 設(shè)是的導(dǎo)函數(shù).
(Ⅰ)若時(shí),函數(shù)在處的切線經(jīng)過(guò)點(diǎn),求的值;
(Ⅱ)求函數(shù)在區(qū)間上的單調(diào)區(qū)間;
(Ⅲ)若,函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率,且直線與橢圓有且只有一個(gè)公共點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與軸交于點(diǎn),過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為常數(shù),當(dāng)時(shí),有三個(gè)極值點(diǎn),,(其中).
(1)求實(shí)數(shù)的取值范圍;
(2)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com