【題目】由于近幾年我國多地區(qū)的霧霾天氣,引起口罩熱銷,某廠家擬在2017年舉行促銷活動,經(jīng)調(diào)查該批口罩銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬元滿足(其中,為常數(shù)).已知生產(chǎn)該批口罩還要投入成本萬元(不包含促銷費(fèi)用),口罩的銷售價格定為元/件.

1)將該批口罩的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);

2)當(dāng)促銷費(fèi)用投入多少萬元時,該廠家的利潤最大?

【答案】12)當(dāng)時,促銷費(fèi)用投入2萬元時,該廠家的利潤最大;當(dāng)時,促銷費(fèi)用投入a萬元時,該廠家的利潤最大.

【解析】

1)由題目提供的等量關(guān)系直接寫出函數(shù)表達(dá)式即可得解;

2)根據(jù)函數(shù)表達(dá)式,利用基本不等式和導(dǎo)數(shù)即可求出最值,即可得解.

1)由題意得,

可得,

2,

當(dāng)且僅當(dāng)時等號成立.

當(dāng)時,促銷費(fèi)用投入2萬元時,該廠家的利潤最大;

當(dāng)時,由可得函數(shù)在上單調(diào)遞增,即當(dāng)促銷費(fèi)用投入a萬元時,該廠家的利潤最大.

綜上,當(dāng)時,促銷費(fèi)用投入2萬元時,該廠家的利潤最大;當(dāng)時,促銷費(fèi)用投入a萬元時,該廠家的利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(常數(shù)).

(Ⅰ)當(dāng)的圖象相切時,求的值;

(Ⅱ)設(shè),若存在極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cosB+C=1

1)求角A的大;

2)若△ABC的面積S=5,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某居民區(qū)有一個銀行網(wǎng)點(diǎn)(以下簡稱“網(wǎng)點(diǎn)”),網(wǎng)點(diǎn)開設(shè)了若干個服務(wù)窗口,每個窗口可以辦理的業(yè)務(wù)都相同,每工作日開始辦理業(yè)務(wù)的時間是8點(diǎn)30分,8點(diǎn)30分之前為等待時段.假設(shè)每位儲戶在等待時段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的概率都相等,且每位儲戶是否在該時段到網(wǎng)點(diǎn)相互獨(dú)立.根據(jù)歷史數(shù)據(jù),統(tǒng)計了各工作日在等待時段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲戶人數(shù),得到如圖所示的頻率分布直方圖:

(1)估計每工作日等待時段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲戶人數(shù)的平均值;

(2)假設(shè)網(wǎng)點(diǎn)共有1000名儲戶,將頻率視作概率,若不考慮新增儲戶的情況,解決以下問題:

①試求每位儲戶在等待時段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的概率;

②儲戶都是按照進(jìn)入網(wǎng)點(diǎn)的先后順序,在等候人數(shù)最少的服務(wù)窗口排隊辦理業(yè)務(wù).記“每工作日上午8點(diǎn)30分時網(wǎng)點(diǎn)每個服務(wù)窗口的排隊人數(shù)(包括正在辦理業(yè)務(wù)的儲戶)都不超過3”為事件,要使事件的概率不小于0.75,則網(wǎng)點(diǎn)至少需開設(shè)多少個服務(wù)窗口?

參考數(shù)據(jù):;;

;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019超長三伏來襲,雖然大部分人都了解伏天不宜吃生冷食物,但隨著氣溫的不斷攀升,仍然無法阻擋冷飲品銷量的暴增.現(xiàn)在,某知名冷飲品銷售公司通過隨機(jī)抽樣的方式,得到其100家加盟超市3天內(nèi)進(jìn)貨總價的統(tǒng)計結(jié)果如下表所示:

組別(單位:百元)

頻數(shù)

3

11

20

27

26

13

(1)由頻數(shù)分布表大致可以認(rèn)為,被抽查超市3天內(nèi)進(jìn)貨總價,μ近似為這100家超市3天內(nèi)進(jìn)貨總價的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),利用正態(tài)分布,求;

(2)(1)的條件下,該公司為增加銷售額,特別為這100家超市制定如下抽獎方案:

m表示超市3天內(nèi)進(jìn)貨總價超過μ的百分點(diǎn),其中.,則該超市獲得1次抽獎機(jī)會;,則該超市獲得2次抽獎機(jī)會;,則該超市獲得3次抽獎機(jī)會;,則該超市獲得4次抽獎機(jī)會;,則該超市獲得5次抽獎機(jī)會;,則該超市獲得6次抽獎機(jī)會.另外,規(guī)定3天內(nèi)進(jìn)貨總價低于μ的超市沒有抽獎機(jī)會;

每次抽獎中獎獲得的獎金金額為1000元,每次抽獎中獎的概率為.

設(shè)超市A參加了抽查,且超市A3天內(nèi)進(jìn)貨總價百元.X(單位:元)表示超市A獲得的獎金總額,求X的分布列與數(shù)學(xué)期望.

附參考數(shù)據(jù)與公式:,若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓)的右焦點(diǎn),且橢圓過點(diǎn).

1)求橢圓的方程;

2)設(shè)動直線與橢圓交于,兩點(diǎn),,,且的面積.

①求證:為定值;

②設(shè)直線的中點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)若,求上的最小值;

2)求的極值點(diǎn);

3)若內(nèi)有兩個零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù),且的導(dǎo)函數(shù),則( )

A. 24 B. -24 C. 10 D. -10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,合肥一中積極開展美麗校園建設(shè),現(xiàn)擬在邊長為0.6千米的正方形地塊上劃出一片三角形地塊建設(shè)小型生態(tài)園,點(diǎn)分別在邊上.

(1)當(dāng)點(diǎn)分別時邊中點(diǎn)和靠近的三等分點(diǎn)時,求的余弦值;

(2)實地勘察后發(fā)現(xiàn),由于地形等原因,的周長必須為1.2千米,請研究是否為定值,若是,求此定值,若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案