【題目】我國自改革開放以來,生活越來越好,肥胖問題也目漸顯著,為分析肥胖程度對總膽固醇與空腹血糖的影響,在肥胖人群中隨機抽出8人,他們的肥胖指數(shù)值、總膽固醇指標(biāo)值單位: )、空腹血糖指標(biāo)值(單位: )如下表所示:
(1)用變量與與的相關(guān)系數(shù),分別說明指標(biāo)值與值、指標(biāo)值與值的相關(guān)程度;
(2)求與的線性回歸方程,已知指標(biāo)值超過5.2為總膽固醇偏高,據(jù)此模型分析當(dāng)值達到多大時,需要注意監(jiān)控總膽固醇偏高情況的出現(xiàn)(上述數(shù)據(jù)均要精確到0.01)
參考公式:相關(guān)系數(shù)
, , .
參考數(shù)據(jù): ,,,,
,,,,
【答案】(1)見解析;(2)達到26.33時,需要注意監(jiān)控總膽固醇偏髙情況出現(xiàn)
【解析】分析:(1)根據(jù)公式計算變量y與x的相關(guān)系數(shù)、變量z與x的相關(guān)系數(shù),即可判定結(jié)論;
(2)求出變量y與x的線性回歸方程,利用回歸方程求不等式的解集,即得結(jié)論.
詳解:(1)變量與的相關(guān)系數(shù)分別是
變量與的相關(guān)系數(shù)分別是
可以看出指標(biāo)值與值、指標(biāo)值與值都是高度正相關(guān).
(2) 與的線性回歸方程, .根據(jù)所給的數(shù)據(jù),可以計算出
,.
所以與的回歸方程是
由,可得,
據(jù)此模型分析值達到26.33時,需要注意監(jiān)控總膽固醇偏髙情況出現(xiàn).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓中心在原點,焦點在軸上,為橢圓長軸的兩個端點,為橢圓的右焦點.已知橢圓的離心率為,且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是橢圓上位于軸上方的一個動點,直線,分別與直線相交于點,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將四棱錐S-ABCD的每一個頂點染上一種顏色,并使同一條棱上的兩端異色,如果只有5種色可供使用,則不同的染色方法種數(shù)為( )
A.240B.360C.420D.960
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)a=3時,方程的解的個數(shù);
(2)對任意時,函數(shù)的圖象恒在函數(shù)圖象的下方,求a的取值范圍;
(3)在上單調(diào)遞增,求a的范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在區(qū)間上有最大值,最小值,設(shè)函數(shù).
(1)求的值;
(2)不等式在上恒成立,求實數(shù)的取值范圍;
(3)方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 曲線的參數(shù)方程為為參數(shù)) ;在以原點為極點, 軸的正半軸為極軸的極坐標(biāo)系中, 曲線的極坐標(biāo)參數(shù)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若射線與曲線,的交點分別為 (異于原點). 當(dāng)斜率時, 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是函數(shù)的零點,.
(1)求實數(shù)的值;
(2)若不等式在上恒成立,求實數(shù)的取值范圍;
(3)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com