已知函數(shù)(為常數(shù),為自然對數(shù)的底)
(1)當時,求的單調區(qū)間;
(2)若函數(shù)在上無零點,求的最小值;
(3)若對任意的,在上存在兩個不同的使得成立,求的取值范圍.
(1)的減區(qū)間為,增區(qū)間為;
(2)的最小值為;
(3)的取值范圍是.
解析試題分析:(1)將代入函數(shù)的解析式,利用導數(shù)求出的單調遞增區(qū)間和遞減區(qū)間;(2)將函數(shù)在上無零點的問題轉化為直線與曲線在區(qū)間上無交點,利用導數(shù)確定函數(shù)在區(qū)間上的圖象,進而求出參數(shù)的取值范圍,從而確定的最小值;(3)先研究函數(shù)在上的單調性,然后再將題干中的條件進行適當轉化,利用兩個函數(shù)的最值或端點值進行分析,列出相應的不等式,從而求出的取值范圍.
試題解析:(1)時,
由得 得
故的減區(qū)間為 增區(qū)間為 3分
(2)因為在上恒成立不可能
故要使在上無零點,只要對任意的,恒成立
即時, 5分
令
則
再令
于是在上為減函數(shù)
故
在上恒成立
在上為增函數(shù)
在上恒成立
又
故要使恒成立,只要
若函數(shù)在上無零點,的最小值為 8分
(3)
當時,,為增函數(shù)
當時,,為減函數(shù)
函數(shù)在上的值域為 9分
當時,不合題意
當時,
故
①  
科目:高中數(shù)學 來源: 題型:解答題
停車場預計“十·一”國慶節(jié)這天將停放大小汽車1200輛次,該停車場的收費標準為:大車每輛次10元,小車每輛次5元.根據(jù)預計,解答下面的問題:
(1)寫出國慶節(jié)這天停車場的收費金額y(元)與小車停放輛次x(輛)之間的函數(shù)關系式,并指出自變量x的取值范圍;
(2)如果國慶節(jié)這天停放的小車輛次占停車總輛次的65%~85%,請你估計國慶節(jié)這天該停車場收費金額的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)若函數(shù)的圖象與軸無交點,求的取值范圍;
(Ⅱ)若函數(shù)在上存在零點,求的取值范圍;
(Ⅲ)設函數(shù),.當時,若對任意的,總存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q億元),它們與投資額t(億元)的關系有經(jīng)驗公式其中,今該公司將5億元投資這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元),
(1)求y關于x的解析式,
(2)怎樣投資才能使總利潤最大,最大值為多少?.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;
(2)若,使成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是定義在上的奇函數(shù),且,若,有恒成立.
(1)判斷在上是增函數(shù)還是減函數(shù),并證明你的結論;
(2)若對所有恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當0≤x≤200時,求函數(shù)v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù).
(1)若對任意、,且,都有,求證:關于的方程
有兩個不相等的實數(shù)根且必有一個根屬于;
(2)若關于的方程在上的根為,且,設函數(shù)的圖象的對稱軸方程為,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
⑴ 求函數(shù)的單調區(qū)間;
⑵ 如果對于任意的,總成立,求實數(shù)的取值范圍;
⑶ 設函數(shù),. 過點作函數(shù)圖像的所有切線,令各切點的橫坐標構成數(shù)列,求數(shù)列的所有項之和的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com