已知函數(shù)f(x)= x/4+ln(x-2)/(x-4),(1)求函數(shù)f)x)的定義域和極值;(2)若函數(shù)(fx)在區(qū)間[a2-5a,8-3a]上為增函數(shù),求實數(shù)a的取值范圍;(3)函數(shù)f(x)的圖象是否為中心對稱圖形?若是請指出對稱中心,并證明;若不是,請說明理由.
解:
(1);
(2)或;
(3)中心對稱圖形,對稱中心是(3, 3/4).
【解析】
求函數(shù)f)x)的定義域 (x-2)/(x-4),求極值時,令導(dǎo)數(shù)為0,,得出x;若函數(shù)(fx)在區(qū)間[a2-5a,8-3a]上為增函數(shù),則導(dǎo)函數(shù)在[a2-5a,8-3a]恒非負(fù);根據(jù)函數(shù)圖像,若有對稱中心,則是中心一定在兩極值點的中心(3, 3/4),證明時,只需證明點均在函數(shù)圖像上。
(1)函數(shù)的定義域為(-∞,2)∪(4,+∞),由得:x=0或x=6,所以
(-∞,0) |
0 |
(0,2) |
(4,6) |
6 |
(6,+∞) |
|
+ |
0 |
- |
- |
0 |
+ |
|
↗ |
極大值 |
↘ |
↘ |
極小值 |
↗ |
(2)由⑴知或所以或
(3)由⑴知函數(shù)的圖象若是中心對稱圖形,則中心一定在兩極值點的中心(3, 3/4),下面證明:
設(shè)是函數(shù)的圖象上的任意一點,則是它關(guān)于(3, 3/4)的對稱點,而,即也在函數(shù)的圖象上.所以函數(shù)的圖象是中心對稱圖形,其中心是(3, 3/4)
科目:高中數(shù)學(xué) 來源: 題型:
|
1 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2x-2-x | 2x+2-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x-1 | x+a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com