求圓心在l1:y-3x=0上,與x軸相切,且被直線l2:x-y=0截得弦長為4
7
的圓的方程.
∵圓心在直線y-3x=0上,且與x軸相切,
∴可設圓的圓心為C(a,3a),半徑r=|3a|.
圓的方程為(x-a)2+(y-3a)2=9a2,
點C到直線l2:x-y=0的距離為d=
|a-3a|
2
=
2
|a|,
∵圓C被直線l2:x-y=0截得弦長為4
7
,
∴根據(jù)垂徑定理,得
r2-d2
=2
7
,即
9a2-2a2
=2
7
,解之得a=±2,
因此,圓的圓心為(2,6),半徑r=6,或圓心為(-2,-6),半徑r=6.
所求圓的標準方程為(x-2)2+(y-6)2=36或(x+2)2+(y+6)2=36.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知以原點為中心的雙曲線的一條準線方程為,離心率

(Ⅰ)求該雙曲線的方程;
(Ⅱ)如圖,點的坐標為是圓上的點,點在雙曲線右支上,求的最小值,并求此時點的坐標;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

圓心在直線3x+2y=0上,并且與x軸交于點(-2,0)和(6,0)的圓的方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓心在第二象限,半徑為2
2
的圓C與直線y=x相切于坐標原點O,過點D(-3,0)作直線l與圓C相交于A,B兩點,且|DA|=|DB|.
(1)求圓C的方程;
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

圓C與直線y=x-2相切于點P,且圓心C在x軸的正半軸上,半徑r=
2

(1)求圓C的方程;
(2)求△POC的面積.(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xoy中,設二次函數(shù)f(x)=x2+2x+b(x∈R)的圖象與兩坐標軸有三個不同的交點.經(jīng)過這三個交點的圓記為C.
(I)求實數(shù)b的取值范圍;
(II)求圓C的一般方程;
(III)圓C是否經(jīng)過某個定點(其坐標與b無關)?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,方程為x2+y2+Dx+Ey+F=0的圓M的內接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且
AB
AD
=0,求D2+E2-4F的值;
(3)設四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判斷點O、G、H是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點M(3,1),直線ax-y+4=0及圓(x-1)2+(y-2)2=4.
(1)求過M點的圓的切線方程;
(2)若直線ax-y+4=0與圓相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓A:(x-2)2+y2=1,曲線B:6-x=
4-y2
和直線l:y=x.
(1)若點M、N、P分別是圓A、曲線B和直線l上的任意點,求|PM|+|PN|的最小值;
(2)已知動直線m:(a-2)x+by-2a+3=0(a,b∈R)與圓A相交于S、T兩點,又點Q的坐標是(a,b).
①判斷點Q與圓A的位置關系;
②求證:當實數(shù)a,b的值發(fā)生變化時,經(jīng)過S、T、Q三點的圓總過定點,并求出這個定點坐標.

查看答案和解析>>

同步練習冊答案