【題目】在平面直角坐標系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為

(Ⅰ)寫出曲線C的直角坐標方程;

(Ⅱ)若直線l與曲線C交于A,B兩點,且AB的長度為2,求直線l的普通方程.

【答案】(Ⅰ) ;(Ⅱ)和x=0.

【解析】

I)將代入曲線極坐標方程,化簡后可求得對應(yīng)的直角坐標方程.(II)將直線的參數(shù)方程代入曲線方程,利用弦長公式列方程,解方程求得直線的傾斜角或斜率,由此求得直線的普通方程.

解:(Ⅰ)將代入曲線C極坐標方程得:

曲線C的直角坐標方程為:

(Ⅱ)將直線的參數(shù)方程代入曲線方程:

整理得

設(shè)點A,B對應(yīng)的參數(shù)為,,

解得,

,因為

,直線l的普通方程為和x=0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),它與曲線C(y2)2x21交于A、B兩點.

(1)|AB|的長;

(2)O為極點,x軸的正半軸為極軸建立極坐標系,設(shè)點P的極坐標為,求點P到線段AB中點M的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線的參數(shù)方程為t為參數(shù)).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程是,曲線的極坐標方程是

1)求直線l和曲線的直角坐標方程,曲線的普通方程;

2)若直線l與曲線和曲線在第一象限的交點分別為P,Q,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

1)求不等式的解集;

2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售某海鮮,統(tǒng)計了春節(jié)前后50天該海鮮的需求量,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進貨1次,商店每銷售1公斤可獲利50元;若供大于求,剩余的削價處理,每處理1公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1公斤可獲利30元.假設(shè)商店每天該海鮮的進貨量為14公斤,商店的日利潤為元.

(1)求商店日利潤關(guān)于需求量的函數(shù)表達式;

(2)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替.

①求這50天商店銷售該海鮮日利潤的平均數(shù);

②估計日利潤在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,,平面,點在棱.

1)求證:平面平面;

2)若直線平面,求此時直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間某商店出售某種海鮮禮盒,假設(shè)每天該禮盒的需求量在范圍內(nèi)等可能取值,該禮盒的進貨量也在范圍內(nèi)取值(每天進1次貨).商店每銷售1盒禮盒可獲利50元;若供大于求,剩余的削價處理,每處理1盒禮盒虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1盒禮盒可獲利30.設(shè)該禮盒每天的需求量為盒,進貨量為盒,商店的日利潤為.

1)求商店的日利潤關(guān)于需求量的函數(shù)表達式;

2)試計算進貨量為多少時,商店日利潤的期望值最大?并求出日利潤期望值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足:對任意實數(shù),方程的解的個數(shù)為偶數(shù)(可以是0個,但不能是無數(shù)個),則稱為“偶的函數(shù)”.證明:

(1)任何多項式均不是偶的函數(shù);

(2)存在連續(xù)函數(shù)是偶的函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)經(jīng)過點,且兩個焦點,的坐標依次為.

(1)求橢圓的標準方程;

(2)設(shè),是橢圓上的兩個動點,為坐標原點,直線的斜率為,直線的斜率為,若,證明:直線與以原點為圓心的定圓相切,并寫出此定圓的標準方程.

查看答案和解析>>

同步練習(xí)冊答案