【題目】給定下列四個命題:
若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;
若一個平面經(jīng)過另一個平面的垂線,那么這兩個平面相互垂直;
垂直于同一直線的兩條直線相互平行;
若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.
其中,為真命題的是
A. 和 B. 和 C. 和 D. 和
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的右焦點為,不垂直軸且不過點的直線與橢圓相交于兩點.
(1)若直線經(jīng)過點,則直線、的斜率之和是否為定值?若是,求出該定值;若不是,請說明理由;
(2)如果,原點到直線的距離為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在長為10千米的河流的一側(cè)有一條觀光帶,觀光帶的前一部分為曲線段,設(shè)曲線段為函數(shù)(單位:千米)的圖象,且圖象的最高點為;觀光帶的后一部分為線段.
(1)求函數(shù)為曲線段的函數(shù)的解析式;
(2)若計劃在河流和觀光帶之間新建一個如圖所示的矩形綠化帶,綠化帶僅由線段構(gòu)成,其中點在線段上.當(dāng)長為多少時,綠化帶的總長度最長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2分別是C: (a>b>0)的左,右焦點,M是C上一點且MF2與x軸垂直,直線MF1與C的另一個交點為N.
(1)若直線MN的斜率為 ,求C的離心率;
(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費用y(萬元)有以下統(tǒng)計資料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
維修費用y | 2 | 4 | 5 | 6 | 7 |
若由資料知y對x呈線性相關(guān)關(guān)系。試求:
(1)求; (2)線性回歸方程;
(3)估計使用10年時,維修費用是多少?
附:利用“最小二乘法”計算a,b的值時,可根據(jù)以下公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: +y2=1(m>1)與雙曲線C2: ﹣y2=1(n>0)的焦點重合,e1 , e2分別為C1 , C2的離心率,則( 。
A.m>n且e1e2>1
B.m>n且e1e2<1
C.m<n且e1e2>1
D.m<n且e1e2<1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg的圖象關(guān)于原點對稱,其中a為常數(shù).
(Ⅰ)求a的值,并求出f(x)的定義域
(Ⅱ)關(guān)于x的方程f(2x)+21g(2x-1)=a在x∈[,]有實數(shù)解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A是橢圓E: =1的左頂點,斜率為k(k>0)的直線交E與A,M兩點,點N在E上,MA⊥NA.
(1)當(dāng)|AM|=|AN|時,求△AMN的面積
(2)當(dāng)2|AM|=|AN|時,證明: <k<2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com