【題目】已知橢圓的左、右焦點(diǎn)為、,,若圓Q方程,且圓心Q在橢圓上.
(1)求橢圓的方程;
(2)已知直線交橢圓于A、B兩點(diǎn),過直線上一動(dòng)點(diǎn)P作與垂直的直線交圓Q于C、D兩點(diǎn),M為弦CD中點(diǎn),的面積是否為定值?若為定值,求出此定值;若不為定值,說明你的理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為.已知橢圓的短軸長(zhǎng)為4,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)為直線與軸的交點(diǎn),點(diǎn)在軸的負(fù)半軸上.若(為原點(diǎn)),且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,橢圓C:()左,右焦點(diǎn)分別為,,且橢圓的長(zhǎng)軸長(zhǎng)為,右準(zhǔn)線方程為.
(1)求橢圓C的方程;
(2)設(shè)直線l過橢圓C的右焦點(diǎn),且與橢圓相交與A,B(與左右頂點(diǎn)不重合)
(i)橢圓的右頂點(diǎn)為M,設(shè)的斜率為,的斜率為,求的值;
(ii)若橢圓上存在一點(diǎn)D滿足,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
Ⅰ當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
Ⅱ當(dāng)時(shí),若在區(qū)間上的最小值為,求a的取值范圍;
Ⅲ若,,且,恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若對(duì)任意的,總存在使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,是橢圓短軸的一個(gè)頂點(diǎn),并且是面積為的等腰直角三角形.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于兩點(diǎn),過作與軸垂直的直線,已知點(diǎn),問直線與的交點(diǎn)的橫坐標(biāo)是否為定值?若是,則求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的焦距為,點(diǎn)在橢圓上,且的最小值是(為坐標(biāo)原點(diǎn)).
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)已知?jiǎng)又本與圓:相切,且與橢圓交于,兩點(diǎn).是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),,則函數(shù)在上的所有零點(diǎn)之和為( )
A.7B.8C.9D.10
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com